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Sparse Support Vector Machine for Intrapartum
Fetal Heart Rate Classification

Jiřı́ Spilka1,2, Jordan Frecon1, Roberto Leonarduzzi1, Nelly Pustelnik1, Patrice Abry1, Muriel Doret3

Abstract—Fetal Heart Rate (FHR) monitoring is routinely used
in clinical practice to help obstetricians assess fetal health status
during delivery. However, early detection of fetal acidosis that
allows relevant decisions for operative delivery remains a chal-
lenging task, receiving considerable attention. This contribution
promotes Sparse Support Vector Machine (SVM) classification
that permits to select a small number of relevant features and
to achieve efficient fetal acidosis detection. A comprehensive set
of features is used for FHR description, including enhanced and
computerized clinical features, frequency domain, and scaling
and multifractal features, all computed on a large (1288 subjects)
and well documented database. The individual performance
obtained for each feature independently is discussed first. Then,
it is shown that the automatic selection of a sparse subset of
features achieves satisfactory classification performance (sensi-
tivity 0.73 and specificity 0.75, outperforming clinical practice).
The subset of selected features (average depth of decelerations
MADdtrd, baseline level β0, and variability H) receive simple
interpretation in clinical practice. Intrapartum fetal acidosis
detection is improved in several respects: A comprehensive set of
features combining clinical, spectral and scale-free dynamics is
used; an original multivariate classification targeting both sparse
feature selection and high performance is devised; state-of-the-
art performance is obtained on a much larger database than
that generally studied with description of common pitfalls in
supervised classification performance assessments.

Index Terms—Biomedical Signal Processing, Supervised Clas-
sification, Sparse SVM, Feature Selection, Fetal Heart Rate

I. INTRODUCTION

Intrapartum fetal monitoring. Fetal heart rate (FHR) is
routinely monitored to assist obstetricians with the evalu-
ation of the oxygenation status of fetuses during delivery.
Notably, they are used for early fetal acidosis detection and
hence for taking timely and relevant decisions for operative
deliveries, to prevent adverse asphyxia outcomes, such as
neural development disability, neonatal encephalopathy, and
cerebral palsy [1]. In daily clinical practice, FHR is mostly
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examined visually following guidelines edited by national
and international scientific societies, such as the International
Federation of Gynecology and Obstetrics (FIGO) [2], that
mostly focus on decelerations and accelerations (frequency
of occurrence, shape and depth, synchronisation with uterine
contractions), long term variabilities, and baseline levels and
trends. However, it is well known that FHR is regulated
by multiple and diverse neurological feedback loops (barore-
ceptors, chemoreceptors), by hormones, and influenced with
various external factors, such as infections, resulting into
complex temporal dynamics, that can not be easily accounted
for by criteria used under visual inspection. Such complexities
result in large inter and even intra-observer variabilities in FHR
analysis, cf. e.g. [3], and are also believed to be the direct cause
for a high rate of cesarean sections for suspected fetal acidosis,
that are a posteriori found to have been unnecessary [4]. These
issues have triggered numerous research efforts to enhance and
automatize FHR analysis and fetal acidosis early detection.
Related works. While FIGO criteria mostly focuses on mor-
phological properties of FHR [5], a set of features, referred
to as linear, has been designed to enhance automatic FHR
analysis by quantifying temporal dynamics, via concepts such
as autocorrelation and spectral analysis, and models that
either rely on characteristic time scales [6] or on scale-free
paradigms [7], [8]. Further, features designed to quantify FHR
complexities, referred to as nonlinear (because they measure
temporal dynamics beyond correlation), and mostly based on
variations of entropy rates [9], were also used. The recently
proposed multifractal and scattering analyses also marry non-
linear complexity measures with scale-free dynamics [7], [10].

Assessment of the performance of each feature for FHR
analysis and acidosis detection is retrospective and relies
mainly on pH (measured from post-birth umbilical cord artery
blood sample), used as a marker of fetal acidosis, thus leading
to focus FHR analysis on the minutes preceding delivery.
Results reported in the literature indicate that fetal acido-
sis can be equally well detected using various independent
features [6], [11]–[13], measuring different aspects of FHR.
However, they also reveal that performance obtained from
single (or univariate) features is not satisfactory enough to
be transfered to clinical practice, thus prompting for the
joint (or multivariate) use of several features. The recourse
to supervised classification and machine learning has thus
been investigated, cf. [13]–[20]. Despite promising results,
contributions available in the literature suffer from classical
limitations: Generally, small size databases (from a few tens to
a few hundreds of subjects, with the notable exception of [17],
[21] using several thousands) versus large number of features,
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resulting in a lack of robustness and generalizability [18];
Complicated nonlinear feature transformations or intricate
decision boundaries, impairing interpretation and thus transfer
to clinical practice [16], [17].
Outline, goals, and contributions. In that context, the present
contribution aims to explore the benefits of imposing sparsity
into supervised classification for fetal acidosis detection based
on the joint use of a collection of features. Its originality is
twofold: First, it makes use of a large (1288 subjects) and well-
documented database of FHR data, collected at a French public
academic hospital (cf. Section II); Second, it constructs the
classification procedure from a Sparse Support Vector Machine
(S-SVM) technique that permits simultaneously to achieve
optimal classification performance and to select, within a long
list, a small number of features that actually contribute to
classification (cf. Section III for feature description, gather-
ing FIGO enhanced and automated, spectral and scale-free
multifractal features, and S-SVM principles and algorithms).
Results, discussed in Section IV, show the need to account for
imbalanced class sizes (healthy versus acidotic subjects) and
the importance of a careful design of performance assessment
procedures (double loop cross validation) to avoid biased
evaluations. Most importantly, the relevance and impact of
sparsity in combining a large set of features for joint fetal
acidosis detection is illustrated, quantified and discussed with
respect to model complexity and ease of interpretation.

II. MATERIAL: DATABASE AND PREPROCESSING

Database. FHR data were collected at the public academic
French Hospital Femme-Mère-Enfant (Lyon, France), from
2000 to 2010, during daily routine monitoring. Data were
recorded using STAN S21 or S23 devices via internal fetal
scalp electrodes. The database consists of 3049 recordings,
each systematically documented by obstetricians in charge of
delivery. It also contains clinical information, notably provid-
ing pH after delivery and obstetrician decision for intervention
because of diagnosed fetal acidosis, cf. [22] for details.

A previous contribution by the authors reported significant
differences between the statistics of the temporal dynamics of
the first (dilatation) and second stages of labor [23]. To permit
a clear assessment of the proposed classification and feature
selection strategies, not blurred by mixing the differences
stemming from the two stages, it has thus been chosen to
perform analysis on the first stage only. Subject inclusion
criteria are [22]: gestational age ≥ 37 (weeks) and maternal
age ≥ 18. Further, data quality requirements are: presence of

TABLE I
Clinical data for the acidotic and normal group. EXPRESSED AS MEAN
(S.D.) OR NUMBER (%). †MARKS STATISTICAL DIFFERENCE ON p < 0.05.

Acidotic Normal
n=37 n=1251

Birthweight (g) 3407 (462) 3321 (469)
Operative delivery for fetal distress (n) 18 (49%) 274 (22%)†

Umbilical cord arterial pH 7.01 (0.03) 7.23 (0.07)†
Apgar score 5 minutes > 7 100% 100%
Time from end of rec. and birth (min) 2.45 (3.28) 1.68 (2.65)

TABLE II
FETAL ACIDOSIS DETECTION CLINICAL BENCHMARK PERFORMANCE.

SE SP #TP #FP #FN #TN

fetal hypoxia .49 .78 18 274 19 977

arterial pH and physiological difference to venous pH, signal
quality (length ≥ 30 min, amount of missing data ≤ 15%, time
between end of recording and birth ≤ 10 min), continuous
monitoring within first stage ending less than 20 minutes
before delivery (and pH measurement). The criteria led to a
subset of N = 1288 selected recordings, which were further
divided into two classes: acidotic, N+ = 37, with pH ≤ 7.05
and normal, N− = 1251, with pH > 7.05 [24]. Clinical
data are reported in Table I. The available documentation
permitted to compute the clinical benchmark performance, as
reported in Table II, showing satisfactory specificity (SP, %
of correctly identified negative cases) but low sensitivity (SE,
% of correctly identified positive cases). The number of true
positives, false positives, false negatives and true negatives
(#TP, #FP, #FN and #TN, respectively) are also shown for
the sake of completeness.
FHR time series and preprocessing. Beat to beat (RR inter-
vals) occurrence times were extracted by the STAN devices
from the recorded fetal ECGs (12-bit resolution and sampling
rate 500 Hz). RR list was corrected for outliers and missing
data by sliding median filtering, using a 10 second sliding
window and thresholds of (1±0.33)µ̄, where µ̄ is the median
computed on the window. Then, it was resampled using
standard cubic spline interpolation to form regularly sampled
beat-per-minute (bpm) time series X(t). As FHR does not
contain energy at frequencies higher than 3 Hz, the sampling
frequency was set to fs = 10 Hz. Missing data over durations
longer than five seconds were discarded from analysis. Feature
computation and supervised classification was performed on
the last 20 minutes of the first stage of labor.

III. METHODS: FEATURES AND SPARSE-SVM

A. Features

Because the present contribution focuses on sparsity in fetal
acidosis detection and not on feature design, a list of 20
features was chosen, from three different categories. Enhanced
and automated FIGO (FI) were selected for relevance to
clinical practice; Spectral energy (SC), and multiscale analysis
(SI) features were selected from previous studies [6]–[8],
[11] as representative of relevant features used and tested at
the research level. The complete feature set is defined as:
SALL = {FI, SC, SI}.

1) FIGO enhanced and automated features (FI): Obste-
tricians examine FHR along three criteria: baseline evolution,
decelerations/accelerations and variability. From X(t), floating
baseline B(t) is estimated as described in [2], [12], and
its evolution along time modeled by linear regression as
B(t) ≈ β0 + β1t. The FIGO guidelines [2] are used here
to automate the counts, #acc and #dec, of accelerations
and decelerations. Impact of decelerations is further quanti-
fied: i) by median absolute deviation (MAD) of X(t) from



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS; AUGUST 2, 2016 3

baseline: MADdtrd = MAD(X(t) − B(t)), quantifying the
average depth ; ii) by cumulated duration of decelerations
Tstress, quantifying average duration ; iii) by cumulated areas
Adec (approximated using a triangle with vertices at onset,
nadir and end of deceleration), quantifying the average size.
Long (LTV ) and short (STV ) term variabilities are computed,
excluding periods of decelerations, using standard procedures,
as detailed e.g., in [2], [25]. This leads to nine enhanced
FIGO features automatically computed from each recording:
{β0, β1,#acc,#dec,MADdtrd, Tstress, Adec, LTV, STV }.

2) Spectral energy (SC): Spectral analysis relies on a spec-
tral bands energy decomposition, assumed to reflect functions
of the autonomic nervous system. It is chosen here to use
the band definition stemming from adults [26] as no widely
accepted alternative exists for fetuses (cf. [8] for discussion):
very low frequency EV LF : [0.003, 0.04] Hz, low frequency
ELF : [0.04, 0.15] Hz (corresponding mainly to sympathetic
and parasymphatetic activity), high frequency EHF : [0.15, 0.4]
Hz (corresponding mainly to parasymphatetic activity). Fur-
ther, the ratio of these energies LF/HF , and spectral index α
estimated over LF-HF bands are used [26]. Spectral estimation
is conducted using a Welch periodogram (window size 1024
samples with 50% overlap). The set of spectral features (SC)
is as follows: {EV LF , ELF , EHF , LF/HF,α}.

3) Multiscale multifractal analysis (SI): FHR variability is
considered a key element of fetal well-being evaluation [27]
and is classically quantified using LTV and STV . Following
our previous contributions [7], [8], [28], variability is here
quantified using the concepts of multiscale and multifractal
analysis, mostly relying on wavelet transforms applied to
FHR. Wavelet coefficients dj,k = 〈ψj,k|X〉 are obtained by
comparing FHR against a collection {ψj,k(t) = 2−jψ(2−jt−
k)}(j,k)∈N2 of dilated (to scale 2j) and translated (to posi-
tion 2jk) templates of the mother wavelet ψ.They permit to
measure the uniform Hölder regularity hmin as supk|dj,k| ∼
2jhmin [29]. Further, scale-free temporal dynamics can be
quantified by the so-called Hurst parameter H , measured using
the evolution of energy across scales [29]:

∑nj

k=1 |dj,k|2 ∼
22jH . It is now well documented that parameter H alone
cannot fully account for the richness of scale-free dynamics
encountered in real-world data and in heart rate variability
analysis (cf. e.g., [7], [30]). This can be described in a
more versatile manner by the multifractal paradigm. Wavelet
leaders are defined as local suprema of wavelet coefficients,
taken within a narrow temporal neighborhood and for all
finer scales: L(γ)

j,k = supλ′⊂3λ 2j
′γ |dλ′ |, with λ = λj,k =

[k2j , (k + 1)2j) and 3λj,k =
⋃
m{−1,0,1} λj,k+m [29]. The

fractional integration parameter γ ≥ 0 is chosen to ensure
minimal regularity. Multifractal properties are then efficiently
characterized by a vector of attributes (cp)p≥1 quantifying the
evolution along scales of the statistics of log-leaders [29]:
Cump lnL

(γ)
j,· ' cp,0 + cp ln 2j . While c1 is closely related to

H [29], c2, c3, c4 are associated to the evolution along scales
of respectively the variance, skewness and kurtosis of lnL

(γ)
j,· ,

provide information beyond correlation and are thus nonlinear
features. This leads to six features: (H,hmin, c1, c2, c3, c4).

B. Sparse-SVM (S-SVM)

1) Classical SVM: SVM has already been used for acidosis
classification, cf. e.g. [15], [17]. Given N P -dimensional
feature vectors xn ∈ RP and class labels yn ∈ {−1, 1} (which
correspond to healthy/non-healthy subjects), SVM searches
for the optimal hyperplane wTxn + b, that separates (margin
maximization [31]) the two classes, and obtained by solving:

(ŵ, b̂) ∈ argmin
w∈RP , b∈R

1

2
‖w‖22 + C

N∑
n=1

Hw,b(xn, yn), (1)

where Hw,b(x, y) = max
(
0, 1− y(w>x + b)

)
is the hinge

loss function, and the regularization parameter C controls
the trade-off between misclassification rate and data sparsity.
Classical SVM promotes data sparsity: Only a few subjects
actually contribute to determine (ŵ, b̂) at the price, though,
of involving all features, i.e., ŵp 6= 0,∀p. Further, it is well
documented (cf. e.g. [15]) that the curse of dimensionality,
P ≈ min(N+, N−), made particularly vivid by the nature
of fetal acidosis detection (small number of acidotic cases
N+, large class imbalance (N+/N− � 1)), weakens the
data sparsity effect of SVM, thus diminishing its classification
robustness. Overcoming such difficulties has prompted re-
search to use special feature selection algorithms (cf. e.g. [17]
and approaches using SVM [32], [33]) or the use of more
appealing and efficient Sparse-SVM [31], [34] that achieves
feature selection and classification jointly.

2) Sparse-SVM: In a nutshell, S-SVM favors sparsity in
model, i.e. in w, rather than in data. To that end, imposing in
Eq. (1) a `1-norm (instead of `2-norm) to the first term proves
useful to induce sparsity in w [35], [36], at the price though
of making the optimization problem difficult. It was however
shown that the reformulation of the penalization term with a
square hinge loss function, H2

w,b, instead of Hw,b permits to
overcome this difficulty:

(ŵ, b̂) ∈ argmin
w∈RP , b∈R

‖w‖1 + C

N∑
n=1

H2
w,b(xn, yn). (2)

To account for the imbalanced classes, the penalization term
consisting of a sum

∑N
n=1 across all subjects in the database

is further split into two weighted sums, one for each class:

(ŵ, b̂) ∈ argmin
w∈RP , b∈R

‖w‖1 + C
λ

N−

N−∑
n=1

H2
w,b(xn, yn)

+ C
(1− λ)

N+

N+∑
n=1

H2
w,b(xn, yn) (3)

with λ ∈ (0, 1) an extra parameter permitting a versatile
control of the balance between FP and FN detections.

C. Performance assessment

1) Performance quantification: Performance is quanti-
fied using SE, SP and the area under receiver-operation-
characteristic (ROC) curve (AUC). SE and SP are evaluated
as explained in Figs. 1 and 2. AUC is estimated from ROC
curves, obtained by varying λ: λ → 0, (resp. 1) favors
high SE (resp., SP). For ease in comparisons (and following
methodologies in [15], [19]), SP is reported for targeted
SE = 0.7 (i.e., #TP = 26, out of 37).
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2) Cross validation for performance assessment: The use
of supervised learning procedures, in general, and of S-SVM,
in particular, requires to address three issues: i) For fixed hyper
parameters (C, λ), compute decision parameters (ŵ, b̂) ; ii)
Select optimal hyper parameters (Copt, λopt) ; iii) Estimate
classification performance. For the first issue, problem (3) is
solved in the primal space using a Forward-Backward Splitting
Algorithm, involving proximity operators [36], developed and
customized by ourselves. Issues ii) and iii) are dealt with using
standard cross-validation procedures [31], [37], which involve
randomly and repeatedly splitting available data into training
and testing subsets. Single-loop cross-validation (SLCV) is
used to select optimal parameters Copt, λopt, as detailed in
Fig. 1. However, performance metrics obtained from SLCV
are regarded as optimistic estimates, since the same dataset
is used both for parameter selection and classification per-
formance assessment [31], [37]. Relevant performance assess-
ment requires instead the use of a double-loop cross-validation
(DLCV) procedure, where parameters for each partition are
estimated using an independent SLCV, as detailed in Fig 2. For
theoretical details on the use of SLCV and DLCV, interested
readers are referred to, e.g. [31], [37].

Fig. 1. Single-loop cross-validation. Feature set S and number of CV loops
K; C and λ are hyper-parameters.
function SLCV(S, K)

1: for C ∈ C do
2: for λ ∈ L do
3: for r = 1 to R do
4: Split S into disjunct sets {Sk}k=1,...,K of size N/K.
5: for k = 1 to K do
6: (ŵ, b̂) = Learn(S \ Sk, C, λ).
7: ŷk = Predict(Sk, (ŵ, b̂)).
8: end /* k */
9: (SE, SP )r = PerfEval(y, {ŷk}k=1,...,K)

10: end /* r */
11: (SE, SP )C,λ =< (SE, SP )r >r
12: end /* λ */
13: λC = maxλ{(SE, SP )C,λ|SE ≥ 0.7}.
14: ŵC = Learn(S, C, λC).
15: end /* C */
16: (Copt, λopt) = maxC,λ{(SE, SP )C,λ|SE ≥ 0.7}.
17: (wopt, bopt) = Learn(S, Copt, λopt).
18: AUCCopt = ROC((SE, SP )Copt,λ).
output {Copt, λopt, (SE, SP )Copt,λopt , AUCCopt}

Fig. 2. Double-loop cross-validation. Feature set S, number of outer CV
loops K, and number of inner CV loops J ; C and λ are hyper-parameters.
function DLCV(S, K, J)

1: for r = 1 to R do
2: Split S into disjunct sets {Sk}k=1,...,K of size N/K.
3: for k = 1 to K do
4: (Cr,k, λr,k) = SLCV(S \ Sk, J)
5: (ŵ, b̂) = Learn(S \ Sk, Cr,k, λr,k).
6: ŷk = Predict(Sk, (ŵ, b̂)).
7: end /* k */
8: (SE, SP )r,k = PerfEval(y, {ŷk}k=1,...,K)
9: end /* r */

10: (SE, SP ) =< (SE, SP )r,k >r,k
11: (Copt, λopt) = SLCV(S,K,C, λ)
12: (wopt, bopt) = Learn(S, Copt, λopt).
output {< Cr,k >r,k, < λr,k >r,k, SE, SP}

Number of CV folds. A leave-one-out CV is used for

performance assessment: The numbers of CV loops are set to
K = N+ (for the CV outer loop of DLCV) and to J = N+−1
(for the inner loop SLCV). This procedure provides robust
parameter estimation (w, C, λ) and straightforward analysis
of misclassified acidotic cases. Further, because CV splits
randomly data into training and testing, the CV is repeated
R = 10 times, for each acidotic, to minimize the impact of
the random selection in healthy subjects.
Feature preprocessing. Because the values within which
each feature naturally evolves are very different, features are
first preprocessed for outliers (Winsorization in the interval
[Q1 − 3IQR,Q3 + 3IQR], where Qi is the i-th quartile and
IQR = Q3 − Q1) and standardized (zero mean and unit
variance) across the entire population N .

IV. RESULTS

A. Univariate analysis

For benchmark, each feature is first used alone for fetal
acidosis detection, in a SLCV S-SVM procedure. Table III
shows that, individually, features Adec, MADdtrd, Tstress,
EV LF , H , and c1 yield the best performance. They are
slightly better than those obtained in clinical practice (cf.
Table II), with SP ≈ 0.60 − 0.65 for the targeted SE = 0.7.
These features clearly point to the importance of decelerations
(duration and depth, but not their numbers) and variability in
acidosis detection. Further, Table III indicates that scale-free
variability, as measured by H (or c1), outperforms traditional
STV and LTV , which favor a priori selected specific time
scales. Nonlinear scale free-features {c2, c3, c4} do not have
significant individual power, neither do the linear spectral
index α and LF/HF ratio (corresponding to results in [8]).

Despite satisfactory SE, the low SP that is achieved prompts
for the joint use of multiple features in acidosis detection.
Prior to multivariate classification and to help interpretation,
correlations amongst all pairs of features, reported in Fig. 3,
are analyzed: i) MADdtrd, Adec, Tstress and EV LF are corre-
lated, indicating that EV LF are associated with decelerations ;
ii) Baseline features do not correlate with other features ;
iii) Features H, c1, hmin are found highly correlated, which
comes as no surprise given their definitions [29] ; iv) Nonlinear
features {cp}p≥2 are weakly correlated to linear features ; v)
As expected, energies in frequency bands and LF/HF ratio
are correlated [8].

TABLE III
UNIVARIATE PERFORMANCE. SP AND #FP CORRESPOND TO TARGETED

SE=0.70, #TP=26, COMPUTED USING SLCV.

Feature: β
0

β
1

#
a
cc

#
d
ec

A
d
e
c

M
A

D
d
tr
d

T
s
tr
e
s
s

S
T
V

L
T
V

L
F
/
H
F

AUC .65 .51 .52 .57 .69 .73 .70 .50 .50 .53
SP .58 .22 .19 .40 .64 .63 .65 .27 .27 .39
#FP 525 980 1015 748 449 462 436 912 913 768

Feature: E
V
L
F

E
L
F

E
H
F

α H h
m
in

c 1 c 2 c 3 c 4

AUC .71 .56 .52 .58 .71 .68 .70 .61 .50 .52
SP .65 .30 .30 .43 .60 .52 .54 .38 .27 .20
#FP 440 877 878 712 500 606 575 775 914 998
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Fig. 3. Pair-wise correlation matrix of all features.

B. Multivariate analysis

1) Feature selection: Fig. 4 reports the weights, obtained
from SLCV, for each feature as function of C and shows:
i) EV LF is marginally chosen at very low C but is then
excluded ; ii) For correlated features, such as (H, c1) or
MADdtrd, Tstress, Adec, EV LF ), only one is selected ; iii)
MADdtrd, β0 and H are the three first features selected
and they remain included while increasing C ; iv) Nonlinear
features c2 and c4 are included next.

Fig. 5 reports AUC and SP (from SLCV, cf. Fig 1), as
functions of C. It shows that optimal performance is obtained
for high sparsity (C = 2−8.5): Only three features (out of
20) are combined to yield optimal acidosis detection. The
selected features (MADdtrd, β0, H) are interestingly observed
to correspond to categories of FHR properties used in clinical
practice: β0 quantifies the average level of the baseline ;
MADdtrd quantifies the overall impact of decelerations ; H
provides a robust measure of FHR variability.

The same SLCV procedure is applied to the three sub-
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Fig. 5. Performance (SP, AUC) for SE ≥ .7 in SLCV as functions of C.

groups (FI , SC, SI) of features independently. Interestingly,
it is observed (cf. Table IV) that while MADdtrd and β0
are selected first, FIGO features alone would not yield a
sparse representation, involving six out of the nine features.
This shows that when added to FIGO features, H efficiently
replaces a number of them. Further, when used alone, the SI
features do take advantage of the nonlinear features c2 and
c4. Also, when used alone, the SC features show the role of
EV LF (decelerations) and EHF (variability).

2) Performance assessment: Again for pedagogical pur-
poses, Table V shows performance evaluated using the SLCV
(bottom) and DLCV (top) procedures. Let us note that with
DLCV the λ can no longer be varied and the targeted SE
of #TP = 26 cannot be controlled, explaining the mild
variations observed in the #TP column. The AUC cannot
be computed for the same reason. Also the optimal C from
DLCV does not necessarily converge to those C due to the data
variations in different CV loops. The table indicates that SLCV
performance is optimistically biased compared to that more
accurately estimated from DLCV, both when analyzing all 20
features and when applied to each subgroup independently.
More importantly, Table V shows that the triplet of features
(MADdtrd, β0, H), extracted directly from the full set of
20 features, displays better performance than any subgroup
(cf. Table V). Compared to the best univariate performance
SP = 0.65 (#FP = 436), it is observed that for the targeted
SE = 0.7 (#TP = 26), SP is significantly increased up to
SP = 0.75 (#FP = 317). Also, for this triplet performance
degrades only mildly when going from SLCV to DLCV
procedures, satisfactorily indicating robust and generalizable
ability to perform acidosis detection on unseen data. Further,
such performance satisfactorily outperforms those obtained in
clinical practice (cf. Table II).

TABLE IV
SELECTED FEATURES. WEIGHTS w ARE COMPUTED USING SLCV.

SALL w

MADdtrd .84
β0 .39
H .36

FI w

MADdtrd .78
β0 .58
Tstress .16
#dec .14
β1 .08
LTV .04

SC w

EV LF .96
EHF .28

SI w

H .87
c2 .37
c4 .34

TABLE V
SPARSE-SVM PERFORMANCE. TOP: DLCV, BOTTOM: SLCV .

log2 C AUC SE SP #TP #FP

SALL -8.5 – .73 .75 27 317
FI -6 – .70 .72 26 351
SC -5 – .68 .64 25 448
SI -6 – .65 .58 24 529

SALL -8.5 .77 .70 .76 26 305
FI -6 .75 .70 .74 26 330
SC -4.5 .66 .70 .67 26 418
SI -6 .73 .70 .63 26 458
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V. DISCUSSION

A. Confusion table for pH and selected features

Beyond quantitative performance assessment, let us com-
ment on the quality of the achieved classification by exami-
nation of the characteristics of its confusion table, i.e., of the
four classification groups: TP, FP, FN, TN. Fig. 6 displays
boxplots quantifying the distributions of pH for these four
groups. A Wilcoxon rank sum test concludes no difference
(pval > 0.05) between correctly (TP) or incorrectly (FN)
classified acidotic subjects. This indicates that TP and FN
subjects have a similarly low pH, i.e. are equally unhealthy.
Conversely, there is a statistically significant difference be-
tween correctly (TN) and incorrectly (FP) classified healthy
subjects (pval ≈ 10−16). This indicates that pH for the FP
varies in a lower range, compared to the normal range within
which TN’s pH are typically observed to evolve (cf. e.g. [38]).
In short, FP subjects are less healthy than TN, and it may be
considered that their pH has started to degrade.

Figs. 6 and 7 further analyze the characteristics of the
four groups with respect to the (projected) decision boundary
using the three features (MADdtrd, β0, H) contributing to
classification. It shows, as expected, that TP and FP groups are
very similar for all three features. The same holds for TN and
FN groups, as well as for other features. This shows that using
these three features, or any other in the list of 20, FP cannot be
discriminated from TP and that FN can not be distinguished
from TN. This is further confirmed in Fig. 8, displaying
FHR time series, that can be considered as typical for each
group: TP and FP records have higher baseline, larger and
more frequent decelerations, and lower variability. Subjects
from the FP group thus exhibit typical patterns leading to
fetal hypoxia, such as large and frequent decelerations and
reduced variability, that might however have lasted only over
short durations without developing fetal acidosis. This detailed
case study prompts for a continued search for new and more
discriminative features.
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B. Boolean combination of feature-group

The 20 features we chose to use stemmed from three
different classes: FI, SC, SI. In the results reported above,
it has been chosen to feed S-SVM with the concatenated
lists of features. However, other approaches have been inves-
tigated [15], [19]. S-SVM was first applied to each group
independently, with performances as reported in Table V.
Second, it was investigated whether boolean combination of
the decision achieved by pairs of groups (e.g., FI and SI)
could yield better performance. Results, reported in Table VI,
indicate that SLCV performance was slightly better while
DLCV performance degraded significantly, showing a weak
generalization ability due to overfitting. First, this highlights
the importance of DLCV for correct performance estimation,
which must be independent of hyper-parameter selection.
Second, it indicates that more complex models (in number of
features and parameters) are less robust than simple ones.

TABLE VI
CONJUNCTION OF FEATURE GROUPS. TOP: DLCV, BOTTOM: SLCV.

G1 ∧G2 log2 C1 log2 C2 SE SP #TP #FP

FI ∧ SC -7.5 -7.0 .62 .74 23 328
FI ∧ SI -7 -6.0 .60 .76 22 307
SC ∧ SI -6.5 -5.5 .68 .69 25 389

FI ∧ SC -8 -4.5 .70 .76 26 297
FI ∧ SI -8 -5.5 .70 .77 26 288
SC ∧ SI -8.5 -5.5 .70 .72 26 351

C. Relevance of features and performance assessment

Standalone (or univariate) use of features for acidosis
detection permits to show that some features achieve by
themselves detection performances that are (slightly) better
than the clinical benchmark reported in Table II. Interestingly,
such features essentially consist of enhanced and automatized
versions of FIGO criteria (Adec, MADdtrd, Tstress), rather
than products of advanced signal processing tools (though
EV LF , H , and c1 also perform well). Obtained results confirm
earlier reports on several different datasets (cf. e.g., [8], [16],
[18]) indicating that scale-free measures of variability (H and
c1) provide valuable and relevant information for acidosis
detection. In effect, Table III shows that STV and LTV
measures of variability, FIGO-based and tied to specific time
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scales, perform less well than scale-free ones (H and c1),
which involve a continuum of time scales (see also [8]).

Multivariate supervised classification, designed from a S-
SVM machine learning strategy, was then shown to permit
both to select a sparse and significant subset of features and
to achieve optimal acidosis detection performance. While S-
SVM never selects a feature that performs poorly individually,
it removes features that individually perform well because they
are redundant (correlated). Interestingly, when examining pairs
of highly correlated features, such as MADdtrd and EV LF , it
can be observed that it is not necessarily the one that performs
best that is selected by S-SVM, thus underlining the benefits of
S-SVM regularization in the multivariate procedure. Further,
it was found, from the large database used here, that S-SVM
preferred a high level of sparsity, with only three features
combined to achieve optimal fetal acidosis detection, yielding
a low complexity decision rule, and hence favoring its inter-
pretation and actual use by obstetricians. Notably, these three
features, MADdtrd, β0 and H , match the FIGO guidelines
advising the joint examination of baseline, decelerations and
variability to assess FHR signals. Moreover, both univariate
and multivariate classification emphasize the predominance of
decelerations in fetal acidosis detection, in agreement with
documented medical reports on the relations of deceleration
to fetus stress and oxygen supply [27] and earlier reports on
acidosis detection performance, cf. e.g., [39]. The performance
obtained from the sparse and simple model constructed by
S-SVM (SE = 0.73, SP = 0.75), significantly outperforms
both univariate performance of the best standalone feature,
and the clinical benchmark performance. Finally, the presented
work contributes to the state of the art in several aspects:
i) S-SVM model is trained and tested on significantly larger
database than is typically reported in literature, cf. e.g., [15],
[17]–[19] ii) S-SVM model is not only sparse, allowing
easy interpretation and transfer into clinical practice, but
also achieves results that outperform those obtained with
different tools on different data sets (cf. e.g., [15], [17],
[19]). Further, performance was estimated using a double-
loop cross validation strategy (as opposed to single-loop cross
validation), which was shown to be a critical step in correctly
assessing actual detection performance on unseen data, i.e.,
having robust generalization properties. This comes at the cost
of significantly increased computational burden but confirms
that simple models generalize better than complex ones. To
avoid such issues, independent databases may be used for
(hyper)-parameter tuning and for performance assessment. The
preliminary results with the database described here and the
open access CTG database [40] are reported in [41].

Two key remarks are further in order: First, the presented
work uses pH ≤ 7.05 as a marker of fetal acidemia. Even-
though this value is not consensual it is widely used in other
studies, cf. e.q. [6], [10], [14], [17], [24] and well accepted
in general clinical practice. Second, it was chosen here to
maintain the population ratio of normal and acidotic cases, and
not to artificially subsample the large class of healthy cases
as it was performed in other studies, cf. e.g. [15]–[17]. This
allows to reproduce in the database the prevalence of acidotic
cases (∼ 3% corresponds to general practice [42]), and to

make the analysis independent of subsampling strategies.

VI. CONCLUSIONS

This contribution aims to promote Sparse Support Vector
Machine classification, that allows both to select (a small
number of) relevant features within a large list and to achieve
efficient fetal acidosis detection. It shows that the automatic
selection of a sparse subset of features achieves satisfactory
classification performance (sensitivity 0.73 and specificity
0.75, outperforming clinical practice). This contribution thus
improves intrapartum fetal acidosis detection in several re-
spects: A set of features combining FIGO, spectral and scale-
free dynamics attributes is used ; an original multivariate
classification targeting both sparse feature selection and high
performance is devised ; state-of-the-art performance is ob-
tained on a much larger database than those generally studied.

Despite satisfactory and promising classification perfor-
mance, the detailed case study of the classification confusion
table indicates that there is still room for improvements, as
the three selected features show a weak power to further
discriminate the remaining FPs from the TPs, and the FNs
from the TNs. Improvements may come from two directions.
First, new features could be used. The set of features used
here may have been longer or different, notably the nonlinear
entropy rates [9], widely used in the literature, phase-rectified
signal average [13], or the more recently proposed scattering
features [10], were observed not to improve detection per-
formance. This means that the search for new and original
characterization of FHR must remain an open and active field,
likely developing at the interface between obstetricians and
signal processing experts to incorporate medical knowledge in
mathematical tools. Second, the present contribution focuses
on a static window of 20 minutes at the very end of the
first stage of labor (following the analysis in [19], [23]).
However, preliminary attempts, cf. e.g. [10], [15], [43] indicate
that further improvement in performance may be gained from
analyzing the evolution of FHR features along time. This is
being further investigated.
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