Pavel Trutman
Globally Optimal Solution to Inverse Kinematics of 7DOF Serial Manipulator

14.1.2020, 13:45

Project name: Intelligent Machine Perception
Project Registration Number: CZ.02.1.01/0.0/0.0/15_003/0000468
Venue: CIIRC, B-670, Jugoslávských partyzánů 1580/3, Prague 6
Globally Optimal Solution to Inverse Kinematics of 7DOF Serial Manipulator

Pavel Trutman1 Mohab Safey El Din2 Didier Henrion3 Tomas Pajdla1

1CIIRC CTU in Prague
2Sorbonne Université, Inria, LIP6 CNRS
3LAAS-CNRS, FEE CTU in Prague

January 14, 2020
Serial manipulator with 7 DOF

- 7 revolute joints → 7 DOF.
- i-th joint is parametrized by angle θ_i.
- Rigid body in space has 6 DOF → redundant manipulator.
- One DOF left → self-motion.

Figure: Example of planar manipulator.
Denavit-Hartenberg convention

- Description of the manipulator by Denavit-Hartenberg (D-H) convention [HD55].

- Parameters α_i, d_i and a_i are found (fixed for given manipulator).

- D-H transformation matrices $M_i(\theta_i) \in \mathbb{R}^{4 \times 4}$ from link i to $i - 1$.

$$M_i(\theta_i) = \begin{bmatrix} \cos \theta_i & -\sin \theta_i & 0 & 0 \\ \sin \theta_i & \cos \theta_i & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & \cos \alpha_i & -\sin \alpha_i & 0 \\ 0 & \sin \alpha_i & \cos \alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$ (1)
Forward kinematics

- Transformation M from the end effector coordinate system to the base coordinate system

$$\prod_{i=1}^{7} M_i(\theta_i) = M. \tag{2}$$

- M represents the end effector pose w.r.t. the base coordinate system

$$M = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}, \quad t \in \mathbb{R}^3 \text{ and } R \in SO(3). \tag{3}$$

- Known joint angles $\theta_i \rightarrow$ evaluation of Equation (2) gives the end effector pose M.

- Joint limits ($i = 1, \ldots, 7$):

$$\theta_i^{Low} \leq \theta_i \leq \theta_i^{High}. \tag{4}$$
Inverse kinematics (IK) problem

- Known end effector pose \(M \rightarrow \text{joint angles} \ \theta_i \).
- Solve \(\prod_{i=1}^{7} M_i(\theta_i) = M \) for \(\theta_i \).
- For redundant manipulator there is an infinite number of solution.
- Let us introduce an objective function to choose an optimal solution.

\[
\min_{\theta \in (-\pi; \pi)^7} \max_{i=1}^{7} \|\theta_i\| \tag{5}
\]

- Approximation by sum of squares.

\[
\min_{\theta \in (-\pi; \pi)^7} \sum_{i=1}^{7} \theta_i^2 \tag{6}
\]

Figure: Two configurations of a planar manipulator with different values of the objective function.
Optimization problem

- Optimization problem:

\[
\begin{align*}
\min_{\theta \in (-\pi; \pi)^7} & \sum_{i=1}^{7} \theta_i^2 \\
\text{s.t.} & \prod_{i=1}^{7} M_i(\theta_i) = M \\
& \theta_{i\text{Low}} \leq \theta_i \leq \theta_{i\text{High}} \quad (i = 1, \ldots, 7)
\end{align*}
\]

- Not polynomial, contains trigonometric functions.

- We remove them by rewriting the problem in new variables \(c = [c_1, \ldots, c_7]^\top \) and \(s = [s_1, \ldots, s_7]^\top \), which represent the cosines and sines of the joint angles \(\theta = [\theta_1, \ldots, \theta_7]^\top \) respectively.

- To preserve the structure, we need to add the trigonometric identities:

\[
q_i(c, s) = c_i^2 + s_i^2 - 1 = 0, \quad i = 1, \ldots, 7.
\]
Problem formulation

Polynomial optimization problem

▶ Polynomial optimization problem equivalent to the original optimization problem:

\[
\begin{align*}
\min_{c \in \langle -1, 1 \rangle^7, \ s \in \langle -1, 1 \rangle^7} & \quad ||c - 1||^2 \\
\text{s.t.} & \quad p_j(c, s) = 0 \quad (j = 1, \ldots, 12) \\
& \quad q_i(c, s) = 0 \quad (i = 1, \ldots, 7) \\
& \quad -(c_i + 1) \tan \frac{\theta_i^{Low}}{2} + s_i \geq 0 \quad (i = 1, \ldots, 7) \\
& \quad (c_i + 1) \tan \frac{\theta_i^{High}}{2} - s_i \geq 0 \quad (i = 1, \ldots, 7)
\end{align*}
\]

(9)

▶ In 14 variables \((c\) and \(s\)).
▶ Contains polynomials up to degree four.
▶ When solved, \(\theta\) are recovered from \(c\) and \(s\) by function \(\text{atan2}\).
Polynomial optimization methods

Polynomial problem:
- Objective function: polynomial.
- Constraints: polynomial inequalities and equations.
- Non-convex.

Semidefinite program [Las01]:
- Each monomial is substituted by a new variable.
- Objective function: linear.
- Constraints: linear matrix inequalities, linear equations.
- Convex, but infinite-dimensional.
Polynomial optimization methods

Polynomial problem:
- Objective function: polynomial.
- Constraints: polynomial inequalities and equations.
- Non-convex.

Relaxed semidefinite program [Las01]:
- Limit the degree of substituted monomials by degree $r \in \mathbb{N}$.
- Convex and finite-dimensional.
- Convergence is ensured.

Implemented in Gloptipoly [HLL09].

\[p_r^* \leq p_{r+1}^* \leq p^* \quad (10) \]
\[\lim_{r \to +\infty} p_r^* = p^* \quad (11) \]
Direct application of polynomial solver

- Direct application of Lasserre hierarchies [Las01] on the problem.

- Second order relaxation
 - 14 variables, monomials up to degree 4 → SDP program with 3060 variables.
 - Computation time in seconds.
 - Solution not obtained in many cases.

- Third order relaxation
 - 14 variables, monomials up to degree 6 → SDP program with 38,760 variables.
 - Computation time in hours.
Symbolic reduction

Theorem

The ideal generated by the kinematics constraints p_j for generic serial manipulator with seven revolute joints and for generic pose M with addition of the trigonometric identities q_i can be generated by a set of degree two polynomials.

Proof.

The proof is computational. See the diagram.
Solving the reduced polynomial optimization problem

Corollary

Polynomials p_j and q_i up to degree four in POP can be replaced by degree two polynomials.

- Application of Lasserre hierarchies [Las01] on the symbolically reduced problem with degree two polynomials.

- First order relaxation
 - 14 variables, monomials up to degree 2 → SDP program with 120 variables.
 - Solution typically not obtained.

- Second order relaxation
 - 14 variables, monomials up to degree 4 → SDP program with 3060 variables.
 - Computation time in seconds.
 - Gives solution for almost all poses.
Experiments with KUKA LBR iiwa

- Special structure: for fixed end effector pose the joint angle θ_4 is constant.

- Previous work:
 - Geometrical derivation of a closed form solution by Kuhlemann et al. [Kuh+16]; new parameter δ is introduced to fix the left DOF.
 - Dai et al. [DIT17] proposed mix-integer convex relaxation of the non-convex rotational constraints; approximation introduces errors in units of centimeters and degrees.

- Synthetic dataset:
 - 10 000 randomly chosen poses.
 - From within and outside of the working space of the manipulator.

Figure: Manipulator KUKA LBR iiwa.
Experiments

Degree four polynomials

- Solve the polynomial optimization problem with degree four polynomials.
- For relaxation order two.
- Using polynomial optimization toolbox GloptiPoly with MOSEK as the semidefinite problem solver.
- For 29.3% poses we failed to compute the solution or report infeasibility.

Figure: Poses of the manipulator solved from degree four polynomials.
Degree two polynomials

- Advantage of special structure of KUKA LBR: eliminate variables c_4 and s_4.

- Symbolically reduce the degree four polynomials to degree two polynomials (Maple).

- Solve for relaxation order two.

- Using polynomial optimization toolbox GloptiPoly with MOSEK as the semidefinite problem solver.

- For 0.1 % poses we failed to compute the solution or report infeasibility.

Figure: Poses of the manipulator solved from degree two polynomials.
Experiments

Numerical stability and execution time evaluation

- End effector poses have been computed by direct kinematics from estimated θ.
- Pose error w.r.t. desired poses measured in 3D space.

Execution time of on-line phase of GloptiPoly and of the symbolic reduction of the polynomials.

![Histogram of pose errors.](image1)

![Histograms of execution time.](image2)
Conclusions

- We proved that the variety of IK solutions of all generic 7DOF revolute serial manipulators can be generated by second degree polynomials only.
- We presented a practical method for globally solving 7DOF IK problem with polynomial objective function.
- Our solution is accurate and can solve/decide infeasibility in 99.9 % cases tested on KUKA LBR iiwa manipulator.
- The code is open-sourced at https://github.com/PavelTrutman/Global-7DOF-IKT.

<table>
<thead>
<tr>
<th>Execution time [s]</th>
<th>Median error</th>
<th>% of failed poses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction step</td>
<td>Translation [mm]</td>
<td>Rotation [deg]</td>
</tr>
<tr>
<td>Deg. 4 polynomials</td>
<td>—</td>
<td>2.12 \times 10^{-4}</td>
</tr>
<tr>
<td>Deg. 2 polynomials</td>
<td>2.3</td>
<td>6.28 \times 10^{-5}</td>
</tr>
</tbody>
</table>

Table: Overview of execution times and accuracy of the presented methods.
Acknowledgement

P. Trutman was supported by the EU Structural and Investment Funds, Operational Programe Research, Development and Education under the project IMPACT (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000468) and Grant Agency of the CTU Prague project SGS19/173/OHK3/3T/13.

T. Pajdla was supported by IMPACT Project CZ.02.1.01/0.0/0.0/15_003/0000468 & EU Structural and Investment Funds, Operational Programe Research, Development and Education and ARtwin - An AR cloud and digital twins solution for industry and construction 4.0 (GA No 856994) H-2020 project.
Bibliography I

