Boolean Leximax Optimisation using Iterative SAT Solving

Miguel Cabral¹ Mikoláš Janota² Vasco Manquinho¹ SAT 2022

- ¹ Universidade de Lisboa
- ² Czech Technical University in Prague

\$ apt install libreoffice

```
$ apt install libreoffice
libreoffice requires:
```

- · libreoffice-writer
- · libreoffice-calc

```
$ apt install libreoffice
libreoffice requires:
```

- · libreoffice-writer
- · libreoffice-calc

libreoffice-calc requires:

·ure

```
$ apt install libreoffice
libreoffice requires:
```

- · libreoffice-writer
- · libreoffice-calc

libreoffice-calc requires:

• ure ← several versions

```
$ apt install libreoffice
libreoffice requires:
```

- · libreoffice-writer
- · libreoffice-calc

libreoffice-calc requires:

ure ← several versions

ure, 7645 requires:

• debconf \geq 1675 or debconf-2.0

```
$ apt install libreoffice
libreoffice requires:
```

- · libreoffice-writer
- · libreoffice-calc

libreoffice-calc requires:

ure ← several versions

ure, 7645 requires:

• debconf \geq 1675 or debconf-2.0

ure, 7645 conflicts with:

· cli-uno-bridge < 16229

System	Manager
ubuntu [®]	apt
f fedora	dnf
python*	pip
Caml	opam

Package Upgradeability \leadsto SAT

Package Upgradeability → SAT **Minimize**:

Package Upgradeability \leadsto SAT

Minimize:

- Number of removed packages
- Number of not up-to-date packages

• ..

Package Upgradeability → SAT

Minimize:

- Number of removed packages
- Number of not up-to-date packages

• ...

Multi-Objective MaxSAT

Hard clauses + Multiple sets of Soft clauses

Multiple Objective Functions

What is the optimum?

 \cdot \mathcal{A} : 10៧, \mathcal{B} : 50៧ is worse than \mathcal{A} : 0៧, \mathcal{B} : 0៧

- A: 10៧, **B**: 50៧ is worse than A: ០៧, **B**: ០៧
- · What about
 - \mathcal{A} : 0교, \mathcal{B} : 30 versus \mathcal{A} : 20교, \mathcal{B} : 20교?

- A: 10៧, **B**: 50៧ is worse than A: 0៧, **B**: 0៧
- · What about
 - A: 0៧, B: 30 versus A: 20៧, B: 20៧?
- · Leximax: "Minimize the higher fine."

- A: 10៧, **B**: 50៧ is worse than A: 0៧, **B**: 0៧
- · What about
 - A: 0₪, B: 30 versus A: 20₪, B: 20₪?
- · Leximax: "Minimize the higher fine."
- · Prefer:
 - \mathcal{A} : 20வ, \mathcal{B} : 20வ to \mathcal{A} : 0வ, \mathcal{B} : 30வ

- \mathcal{A} : 10៧, \mathcal{B} : 50៧ is worse than \mathcal{A} : ០៧, \mathcal{B} : ០៧
- · What about
 - \mathcal{A} : 0교, \mathcal{B} : 30 versus \mathcal{A} : 20교, \mathcal{B} : 20교?
- · Leximax: "Minimize the higher fine."
- · Prefer:
 - \mathcal{A} : 20வ, \mathcal{B} : 20வ to \mathcal{A} : 0வ, \mathcal{B} : 30வ
- Generalize by:
 Sort decreasingly and compare lexicographically

Lexicographic vs Leximax

Lexicographic vs Leximax

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$o_1 \vee o_4 \Leftrightarrow y_1$$

$$X_4$$
 X_5
 X_6
 X_6
 X_6
 X_6

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$o_1 \lor o_4 \Leftrightarrow y_1$$

 $o_2 \lor o_5 \Leftrightarrow y_2$

$$X_4$$
 X_5
 X_6
 O_5
 O_6

$$f_1: X_1 + X_2 + X_3$$
$$f_2: X_4 + X_5 + X_6$$

$$\begin{array}{c|c} X_1 & & & 0_1 \\ X_2 & & & 0_2 \\ X_3 & & & & 0_3 \end{array}$$

$$0_1 \lor 0_4 \Leftrightarrow y_1$$

 $0_2 \lor 0_5 \Leftrightarrow y_2$
 $0_3 \lor 0_6 \Leftrightarrow y_3$

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$o_1 \lor o_4 \Leftrightarrow y_1$$

$$o_2 \lor o_5 \Leftrightarrow y_2$$

$$o_3 \lor o_6 \Leftrightarrow y_3$$

$$y_1 + y_2 + y_3 = \max(f_1, f_2)$$

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$o_1 \vee o_4 \Leftrightarrow y_1$$

$$o_2 \lor o_5 \Leftrightarrow y_2$$

$$o_3 \lor o_6 \Leftrightarrow y_3$$

$$y_1 + y_2 + y_3 = \max(f_1, f_2)$$

Minimize
$$y_1 + y_2 + y_3$$

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$o_1 \lor o_4 \Leftrightarrow y_1$$

$$o_2 \vee o_5 \Leftrightarrow y_2$$

$$o_3 \lor o_6 \Leftrightarrow y_3$$

$$y_1 + y_2 + y_3 = \max(f_1, f_2)$$

Minimize
$$y_1 + y_2 + y_3$$

Optimum =
$$k$$

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$o_1 \vee o_4 \Leftrightarrow y_1$$

$$o_2 \lor o_5 \Leftrightarrow y_2$$

$$o_3 \vee o_6 \Leftrightarrow y_3$$

$$y_1 + y_2 + y_3 = \max(f_1, f_2)$$

Minimize
$$y_1 + y_2 + y_3$$

Optimum =
$$k$$

Fix
$$y_1 + y_2 + y_3 = k$$

$$f_1: X_1 + X_2 + X_3$$

 $f_2: X_4 + X_5 + X_6$

$$o_1 \lor o_4 \Leftrightarrow y_1$$

$$o_2 \lor o_5 \Leftrightarrow y_2$$

$$o_3 \lor o_6 \Leftrightarrow y_3$$

$$y_1 + y_2 + y_3 = \max(f_1, f_2)$$

Minimize
$$y_1 + y_2 + y_3$$

Optimum =
$$k$$

Fix
$$y_1 + y_2 + y_3 = k$$

Repeat with second maximum.

· Major difficulty is the encoding of sorting networks

- · Major difficulty is the encoding of sorting networks
- large CNF encoding

- · Major difficulty is the encoding of sorting networks
- large CNF encoding
- difficult for SAT solvers

- Major difficulty is the encoding of sorting networks
- large CNF encoding
- difficult for SAT solvers
- · Core-guided:

- Major difficulty is the encoding of sorting networks
- large CNF encoding
- difficult for SAT solvers
- · Core-guided:
 - · Initially all the variables set to minimum.

- Major difficulty is the encoding of sorting networks
- large CNF encoding
- difficult for SAT solvers
- · Core-guided:
 - Initially all the variables set to minimum.
 - · Permit non-optimality if it appears in a core.

- Major difficulty is the encoding of sorting networks
- large CNF encoding
- difficult for SAT solvers
- · Core-guided:
 - · Initially all the variables set to minimum.
 - · Permit non-optimality if it appears in a core.
 - Include variables in a core into the sorting network.

- Major difficulty is the encoding of sorting networks
- large CNF encoding
- difficult for SAT solvers
- · Core-guided:
 - · Initially all the variables set to minimum.
 - · Permit non-optimality if it appears in a core.
 - Include variables in a core into the sorting network.
 - Augment old sorting network with new variables

- Major difficulty is the encoding of sorting networks
- large CNF encoding
- difficult for SAT solvers
- · Core-guided:
 - · Initially all the variables set to minimum.
 - · Permit non-optimality if it appears in a core.
 - Include variables in a core into the sorting network.
 - · Augment old sorting network with new variables
 - · Or Rebuild the network.

Instances:
 Package Upgradeability benchmarks
 from the Mancoosi project

- Instances:
 Package Upgradeability benchmarks
 from the Mancoosi project
- mccs (ILP-based algorithm)

- Instances:
 Package Upgradeability benchmarks
 from the Mancoosi project
- mccs (ILP-based algorithm) with CPLEX, Gurobi, SCIP, Cbc, GLPK, lpsolve

- Instances:
 Package Upgradeability benchmarks
 from the Mancoosi project
- mccs (ILP-based algorithm) with <u>CPLEX</u>, <u>Gurobi</u>, SCIP, Cbc, GLPK, lpsolve

- Instances:
 Package Upgradeability benchmarks
 from the Mancoosi project
- mccs (ILP-based algorithm) with
 CPLEX, Gurobi, SCIP, Cbc, GLPK, lpsolve

- Instances:
 Package Upgradeability benchmarks
 from the Mancoosi project
- mccs (ILP-based algorithm) with
 CPLEX, Gurobi, SCIP, Cbc, GLPK, lpsolve
- · packup (SAT-based algorithms) with CaDiCaL

- Instances:
 Package Upgradeability benchmarks
 from the Mancoosi project
- mccs (ILP-based algorithm) with
 CPLEX, Gurobi, SCIP, Cbc, GLPK, lpsolve
- · packup (SAT-based algorithms) with CaDiCaL
 - various non-core-guided search (binary, linear, etc.)
 - various core-guided search differing on how to augment the sorting network

Comparison — SAT-based

Evaluation — Package Upgradeability

Evaluation — SAT Competition

Solving Multi-Objective Optimization for Leximax

- Solving Multi-Objective Optimization for Leximax
- SAT-based solving

- Solving Multi-Objective Optimization for Leximax
- · SAT-based solving
- · Core-based solving

- Solving Multi-Objective Optimization for Leximax
- SAT-based solving
- · Core-based solving
- · Evaluation on Package Upgradeability

- Solving Multi-Objective Optimization for Leximax
- SAT-based solving
- · Core-based solving
- · Evaluation on Package Upgradeability
- Core-guided the best out of the SAT-based