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Outline of the talk:
® Fourier tx in 1D, computational complexity, FFT.
¢ Fourier tx in 2D, centering of the spectrum.

¢ Examples in 2D.
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Initial idea, filtering in frequency domain @
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Image processing = filtration of 2D signals.

: [—— — —
input "\ | spatial L output
image | filter Jr image

direct frequency| | inverse
transformation filter transformation

Filtration in the spatial domain. We would say in time domain for 1D signals. It is a linear
combination of the input image with coefficients of (often local) filter. The basic operation is
called convolution.

Filtration in the frequency domain. Conversion to the ‘frequency domain’, filtration there, and the

conversion back.
We consider Fourier transform, but there are other linear integral transforms serving a similar

purpose, e.g., cosine, wavelets.
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1D Fourier transform, introduction

Fourier transform is one of the most commonly used techniques in
(linear) signal processing and control theory.

It provides one-to-one transform of signals from/to a time-domain
representation f(¢) to/from a frequency domain representation

F(&).
It allows a frequency content (spectral) analysis of a signal.

FT is suitable for periodic signals.

If the signal is not periodic then the Windowed FT or the linear
integral transformation with time (spatially in 2D) localized basis
function, e.g., wavelets, Gabor filters can be used.

3/65

Joseph Fourier
1768-1830
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Odd, even and complex conjugate functions

/K
Even f(t) = f(-t) d
A
t
Odd f)=—f(—t) | S
Conjugage s f( 5) =243
wm&iﬁ 1&) = 17(=5) f(=5)=2—3i

¢ {* denotes a complex conjugate function.

® {is a complex unit.
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Any function can be decomposed @ 0
as a sum of the even and odd part

5/65

f(t) — fe(t) + fo(t)

N/
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Fourier Tx definition: continuous cased

F{f(t)} = F(§), where € [Hz=s"1] is a frequency and 27¢ [s™1] is the angular frequency.

Fourier Tx Inverse Fourier Tx

F€) = [ f@emsdr | f()= [ F(§erieta

What is the meaning of the inverse Fourier Tx? Express it as a Riemann sum:
F(t) = (.. + F(&) ™0 + F(€) ™51 .1 ) A€,

kde Aé =&k — & proV k.

= Any 1D function can be expressed as a the weighted sum (integral) of many different complex
exponentials (because of Euler's formula € = cos & + isin €, also of cosinusoids and sinusoids).
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Existence conditions of Fourier Tx

7/65
&
1. [ | f(t)]dt < oo, ie f(t) hasto grow slower than an exponential curve.
— 00
2. f(t) can have only a finite number of discontinuities and maxima, minima in any finite
rectangle.
3

. f(t) need not have discontinuities with the infinite amplitude.

Fourier transformation exists always for digital images as they are limited and have finite number
of discontinuities.
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Fourier Tx, symmetries

Symmetry with regards to the complex conjugate part, i.e., F'(—i§) = F*(i€).
|F'(i€)| is always even.

The phase of F'(i&) is always odd.

Re{F(i£)} is always even.

Im{F(i£)} is always odd.

The even part of f(t) transforms to the real part of F'(i&).

The odd part of f(t) transforms to the imaginary part of F'(i§).

8/65
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Convolution, definition, continuous case @
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Convolution (in functional analysis) is an operation on two functions f and h, which produces
a third function (f % h), often used to create a modification of one of the input functions.

Convolution is an integral ‘mixing’ values of two functions, i.e., of the function h(t), which is
shifted and overlayed with the function f(¢) or vice-versa.

Consider first the continuous case with general infinite limits
(PO = s N = [ fohe-rdr= [ fe-r) ) dr

The limits can be constraint to the interval |0, t], because we assume zero values of functions
for the negative argument

FmO == NO= [ S ne=rydr= [ fe=r)nrydr,
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Cross-correlation and convolution

10/65
Convolution * defined for 1D signals uses the flipped kernel h

/ () bt — ) dr

Cross-correlation x defined for 1D signals uses the (unflipped) kernel A

geny= [ FEmenar,

where f* denotes the complex conjugate of f.

Cross-correlation is a measure of similarity of two functions as a function of a (time) shift 7.
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Convolution, discrete approximation @
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(f*h)(@) = (hxf)(@) = > h(i—m) f(m)= Y h(i) f(i—m),

meQO meQO

where O is a local neighborhood of a ‘current position' ¢ and h is the convolution kernel (also
convolution mask).
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Fourier Tx, properties (1)

Property f(t) EF(€)
Linearity afi(t) +bfa(t) | a F1(§) + b Fy(€)
Duality F(t) f(=¢)
Convolution (f *9)(t) F(§) G(§)
Product f(t) g(t) (F =+ G)(&)
Time shift F(t — to) e 2™ [ (¢€)
Frequency shift e R0t £ (1) F(& — &o)
Differentiation djit) 2miE F(€)
Multiplication by t £(t) L ahe)
Time scaling f(at) ' (£/a)

12/65
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Fourier Tx, properties (2)

Area in time F(0)= [ f(t)dt Area function f(t).
Area in freq. f(0) = }O F(&)dg Area under F(£)
Parseval's th. T | f(t)|*dt = T |[F(&)|?dE | f energy = F energy

13/65
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B % N
Basic Fourier Tx pairs (1) @

o(1)

Dirac

14/65
11/
SRR
0 ! 2T-T 0 T 2T ¢
0(S)
0 S

constant oo sequence of Diracs
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Basic Fourier Tx pairs (2)

J()=cos(2n5, 1)

w o\ L\
J

fly=sin(2ng,1)  f{r)=cos(2mg,1)

ANA

Re F(C)
w1 ]
S 0 ¢

cosine

CAm ¢

15/65

+ cos(4ng,t)

\ |

WA

VIV VY Y W

Im F(€) Re F(€)

S I A B
l

0 & & -28, -G, 0 So 28, é

two cosines mixture
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Basic Fourier Tx pairs (3) @ -
16/65
fiv f)=(sin 2% )/ ft)=exp(-t)
o : =
- 0 T ! 0 t 0 t
Re F(§)=(sin 2rST)/nS Re F(€) Re FE)=T exp(-n'E)
1
F(@ vAVQvZXWQWAv , /\ .
0 & 0& ¢ 0 S

rectangle in ¢ rectangle in & Gaussian
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Uncertainty principle @
17/65

@ All Fourier Tx pairs are constrained by the uncertainty principle.

® The signal of short duration must have wide Fourier spectrum and vice versa.

® | (signal duration) (frequency bandwith) > -

. . 2 L .
¢ Observation: Gaussian ¢~*" modulated by a sinusoid (Gabor function) has the smallest

duration-bandwidth product.

@ The principle is related to Heisenberg Uncertainty Principle from quantum mechanics (Werner
Heisenberg, published 1927, Nobel Prize 1932). This principle constraints the precision with
which the position and the momentum of a particle can be known.

® W. Heisenberg 1927: “It is impossible to determine accurately both the position and the
direction and speed of a particle at the same instant”.
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Fourier transform assumes a periodic signal. What if a non-periodic signal has to be processed?
There are two common approaches.

1. To process the signal in small chunks (windows) and assume that the signal is periodic
outside the windows.

The approach was introduced by Dennis Gabor in 1946 and it is named Short time Fourier transform.

Dennis Gabor, 1900-1979, inventor of holography, Nobel price for physics in 1971, studied in Budapest,
PhD in Berlin in 1927, fled Nazi persecution to Britain in 1933.

Mere cutting of the signal to rectangular windows is not good because discontinuities at windows limits
cause unwanted high frequencies.

This is the reason why the signal is convolved by a dumping weight function, often Gaussian or Hamming
function ensuring the zero signal value at the limits of the window and beyond it.

2. Use of more complex basis function, e.g., wavelets in the wavelet transform.
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Discrete Fourier transform

¢ Let f(n) be an input signal (a sequence), n =0,..., N — 1.
¢ Let F'(k) be a Frequency spectrum (the result of the discrete Fourier transformation) of a
signal f(n).

@ Discrete Fourier transformation

The spectrum F'(k) is periodically extended with period N.

@ |nverse discrete Fourier transformation

fln) =5 Y- Fk) 5o
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Computational complexity, a reminder @

20/65
While considering complexity, it is abstracted from a specific computer. Only an asymptotic
behavior of algorithms is concerned.

Bounds are sought, which are used to express time or memory requirements of an algorithm.

An asymptotic upper and lower bounds for the magnitude of a function g(n) (i.e., its growth)
in terms of another, usually simpler, function is sought.

The notation O(n), 2(n) decribes limiting behavior of a function when its argument n goes
to oo.

O(g(n)) denotes the set of functions f(n), where f(n) bounds g(n) asymptotically from
below. Formally, there exist a positive constant ¢ and a number ng such that
0< f(n) <cg(n) for all n > nyg.

(2(g(n)) denotes the set of functions f(n), where bounds g(n) asymptotically from above.
Formally, there exist a positive constant ¢ and a number ng such that 0 < cg(n) < f(n) for
all n > ny.
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Computational complexity, the notation @
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‘Big O()’ notation; for example, O(n?) means that the number of algorithm steps will be
roughly proportional to the square of the number of samples in the worst case.

Additional terms and multiplicative constants are not taken into account because a qualitative
comparison is sought.

The quadratic complexity O(n?) is worse than say O(n) (linear) or O(1) (constant,
independent of the length n), but is better than O(n?) (cubic).

If the complexity is exponential, e.g., O(2"), then it often means that the algorithm cannot
be applied to larger problems (in practical terms).

Similarly, ©2() notation.
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Computational complexity of the Discrete Fourier Transform @

22/65
¢ Let W be a complex number, W = e_J2Vm.
N-1 . N-1
Discrete Fourier Transform (DFT) F'(k) = Z f(n) e Mkr = Z W™ f(n)
n=0 n=0

¢ The vector f(n) is multiplied by the matrix whose element (n, k) is the complex constant W
to the power n times k.

¢ Calculating each DFT coefficient requires N complex multiplications and N — 1 complex
additions.

¢ Calculation all N DFT coefficients requires N? complex multiplications and N(N — 1)
complex additions.

@ The overall computational complexity O(N?).
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Fast Fourier transform
23/65

@ A Fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier
transform and its inverse.

¢ Statement: FFT has the complexity O(N log, N).
¢ Example (according to Numerical recepies in C):
e A sequence of N = 10°, 1 psecond computer.

e FFT 30 seconds of CPU time.
e DFT 2 weeks of CPU time, i.e., 1,209,600 seconds, which is about 40.000 x more.
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Fast Fourier transform, the signal division @
24/65

® A FFT core idea

The DFT of length N can be expressed as sum of two DFTs of length N/2, the first one
consisting of odd and the second of even samples.

(Danielson, Lanczos in 1942; further developed by Cooley, Tukey in 1965)
® There are two approaches how to split the signal called
e Decimation in time (DIT);
e Decimation in frequency (DIF).
® Note 1: FFT exists also for a general length N .

® Note 2: The input sequence can be divided to more than two parts in general.



http://cmp.felk.cvut.cz

W N
Decimation in time (DIT) @
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¢ The input sequence f(n), n =1,..., N — 1 is divided into even f¢(n’) and odd f°(n’)
parts, n’ =0,1,...,N/2 — 1.

@ The Fourier transform of corresponding parts denoted F'¢, F'° can be calculated recursively
F(k) = Fé(k) + WNk Fo(k), where k = 0,1,..., N.

® The signals F'® and F'° are of a half length. Due to their periodicity, F'¢(k' + N/2) =
Fe(k"), F°(K'+ N/2) = F°(K') forany k' =0,1,...,N/2 — 1.

for - e e
- ST :- Fi1)
W R
ey AN
i) — N
e - *—-Exi-.—:frﬂil
e T R
[ — A

Courtesy: Pavel Karas.
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Decimation in frequency (DIF) @
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¢ The input sequence f of the length NV is divided into sequences f" and f* as f"(n') =
f) + f (0 % NJ2), f* = (f(0)) = f(0' + N/2)) W

¢ Their Fourier transform fulfills: F" (k") = F(2k’) and F*(k') = 2k’ + 1 for any
K'=0,1,...,N/2—1.

¢ Sequences f" and f° can be processed recursively with inverse equations f(n’) =

(170 + P W), F0 4 5) = 5 (70) = @) W),

Courtesy: Pavel Karas.
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FFT, decimation in time, the proof idea

N—-1
—2mikn
F(k) = ) e 5 f(n)
n=0
(N/2)—1 (N/2)—1
—27mk:(2n) —27r7,k:(2n+1)
= > e F(2n) + Z f(2n+1)
n=0
(N/2)-1 . (N/2)-1 |
—2mikn k —2mikn
= Z e N2 f(2n)+ W Z e N2 f(2n+1)
n=0 n=0

= FYk)+WFFo(K), k=1,...,N

® The key idea: recursiveness and N is power of 2.

¢ Only log, N iterations needed.

27/65
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FFT, the proof idea (2) @
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® Spectra F'°(k) and F°(k) are periodic in k with length N/2.
® What is Fourier transform o length 17 Answer: It is just identity.

¢ For every pattern of log, N e's and 0's, there is a one-point transform that is just one of
input numbers f(n),

F6066060...06€(k,) — f(n) .For some n .

® The next trick is to utilize partial results = butterfly scheme of computations.
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FFT butterfly calculation scheme @‘
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Iteration

1

e

2
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2D Fourier transform

The idea. The image function f(x,vy) is decomposed to a linear combination of harmonic (sines
and cosines, more generally orthogonal) functions.

Definition of the direct transform. u, v are spatial frequencies.

Fuw) = [ [ fay) e ary

-0 —00
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Inverse Fourier tranform

31/65

flz,y) = / / F(u,v) e2™H@utyv) qy do

-0 —&0

¢ f(x,y) is a linear combination of simple harmonic functions (components) 27 (zutuv),

@ Thanks to Euler formula
in general €'* = cos z + ¢ sin 2, here cos(—2mizu) + i sin(—2mizu),

cos corresponds to the real part and sin corresponds to the imaginary part.

¢ Function F'(u,v) (complex spectrum) gives weights of harmonic components in the linear
combination.
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Spatial frequencies spectrum @
32/65

The outcome of the Fourier transform is a complex function F'(u, v).

(Complex) spectrum  F(u,v) = Fre(u,v) + i Fpp(u, v)

Amplitude spectrum  |F(u,v)| = \/F2, (u,v) + F2 (u,v)

Phase angle spectrum  ¢(u,v) = tan™" {%{2&5”

Power spectrum P(u,v) = |F(u,v)|* = F3,(u,v) + F? (u,v)
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2D sinusoid, illustration
33/65

¢ 2D sinusoids can be imagined as plane waves with the amplitude shown as intensity (gray
level).

¢ The analogy to corrugated iron comes from a topographic displaying of a 2D sinusoid (or

cosinusoid).
l\ ’ \ § $ amplitude m
p;ri—o:i A
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2D sinusoid, illustration (2) @ -
34/65

(u,v)

w=+vVuZ+v2 u=wcosO®, v=wsin®, O = tan"* (%)

 sin ®
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lllustration of 2D FT bases vectors
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Analogy — corrugated iron.

b4 7l

N ﬁ;
\ 4\%\"\ N \
4 N :’;WWN: 1

N

cos(x + 4y)
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Linear combination of base vectors

analogy: carton egg tray

different display only
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2D discrete Fourier transform

37/65

Direct transform

i
2

1 nuv
Flno) = 37y 2 (57 %))
fmnexp mMjLN

u=0,1,...,. M —1, v=20,1,...,.N —1,

Inverse transform

f(m,n) = F(u,v) exp{2m’ (T;\L;Jr%})} :

m=0,1,...,.M —1, n=0,1,....,.N —1.
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2D Fourier Tx as twice 1D Fourier Tx @
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2D direct FT can be modified to

2 )_iM‘l 1~ (—2minv Fm.m) —2mimu
u,v) = M N eXp N m,n €Xp M ,

uw=0,1,...,.M —1, v=20,1,..., N —1.

® The term in square brackets corresponds to the one-dimensional Fourier transform of the mth
line and can be computed using the standard fast Fourier transform (FFT).

® Each line is substituted with its Fourier transform, and the one-dimensional discrete Fourier
transform of each column is computed.
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Gaussian is selected for illustration because it has a smooth spectrum, cf. uncertainty principle.




Gaussian2DanimCinepak.avi
Media File (video/avi)
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Real part of the spectrum, image and mesh @

41/65
Problem with the image related coordinate system related to the image: interesting information is

in corners, moreover divided into quarters. Due to spectrum periodicity it can be arbitrarily shifted.

Real part of the spectrum
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100p

Real part of the spectrum
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350F ] 054

400}

450} -
500

300

500
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100 200 300 400 500 100
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real part, image real part, mesh
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Imaginary part of the spectrum, image and mesh
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Log power of the spectrum,

Spatial frequency v

log power spectrum

50;¢_.;g }'7..
100f
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Periodic image @
44/65

-N -N12 0 N/2 N

Spatial discontinuities caused by considering an
image to be periodic
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-N/2 0 N/2 N 2N
-N/2

~ N
Representation of spectra
being easier to interpret »

Single period of the spectrum
computed by a DFT
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It is useful to visualize a centered spectrum with the origin
of the coordinate system (0,0) in the middle of the
spectrum.

Assume the original spectrum is divided into four
quadrants. The small gray-filled squares in the corners
represent positions of low frequencies.

Due to the symmetries of the spectrum the quadrant
positions can be swapped diagonally and the low
frequencies locations appear in the middle of the image.

MATLAB provides the function fftshift, which converts
noncentered <— centered spectra by switching quadrants
diagonally.

A

D

=

B

C

o

original spectrum

low frequencies in corners

C

B

D

=

A

shifted spectrum
with the origin at (0, 0)

46,65
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Real part of the centered spectrum, image and mesh

Spatial frequency v
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47/65

Real part of the spectrum, centered
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real part, mesh
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Imaginary part of the centered spectrum

Spatial frequency v

image and mesh

Imaginary part of the spectrum, centered
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Imaginary part of the spectrum, centered
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Log power of the centered spectrum

Spatial frequency v
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Prague Castle example, input image 265 x 256
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Real part of the centered spectrum, image and mesh
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Imaginary part of the centered spectrum @ 9
image and mesh

52/65

Imaginary part of the spectrum, centered
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Log power of the centered spectrum
image and mesh

53/65

log power spectrum, centered
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log power spectrum, centered
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Rice example, input image 265X 256 @

54/65
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Real part of the centered spectrum, image and mesh @
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Real part of the spectrum, centered

Real part of the spectrum, centered
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Imaginary part of the centered spectrum @ 9
image and mesh

56,65

Imaginary part of the spectrum, centered
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Log power of the centered spectrum
image and mesh

57/65

log power spectrum, centered

log power spectrum, centered

Spatial frequency v

-100 -50 0 50 100 .
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image mesh
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Horizontal line example, real part of the spectrum @
59,/65

Frequency spectrum, real part of the FFT

Real(FFT2(image))

L 3

300

150
100

Spatial frequency v Spatial frequency u
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Horizontal line example, @ 2
imaginary part of the spectrum 60/65

Frequency spectrum, imaginary part of the FFT
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Horizontal line example, power spectrum
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Real part of the centered spectrum,

Spatial frequency v
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Imaginary part of the centered spectrum
image and mesh
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Log power of the centered spectrum
image and mesh
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____________ spatial S
filter
direct frequency inverse
transformation filter transformation
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Spatial frequency v
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Real part of the spectrum
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Spatial frequency v
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Imaginary part of the spectrum
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Spatial frequency v
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Spatial discontinuities caused by considering an
image to be periodic
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Representation of spectra
being easier to interpret :

Single period of the spectrum
computed by a DFT
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Spatial frequency v
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Spatial frequency v

-250

—-200

-150

—-100

50

100

150

200

250

—-200

log power spectrum, centered

-100 0 100
Spatial frequency u

200



log power spectrum, centered

200

0 100

-100 ey
200 oy 100

Spatial frequency v Spatial frequency u



50

100

150

200

150

100

50



Spatial frequency v
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Real part of the spectrum, centered
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Spatial frequency v
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Imaginary part of the spectrum, centered
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Spatial frequency v

-100

-50

50

100

—-100

log power spectrum, centered

-50 0 50
Spatial frequency u

100



log power spectrum, centered

5.l |
A

o i

-20

Spatial frequency v Spatial frequency u






Spatial frequency v
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Real part of the spectrum, centered
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Spatial frequency v
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Frequency spectrum, real part of the FFT
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Imag(FFT2(image))
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Power spectrum
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Spatial frequency v
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Real part of the spectrum, centered
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Spatial frequency v
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Imaginary part of the spectrum, centered
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Spatial frequency v

-250

—-200

-150

-100

-50

50

100

150

200

250

—-200

log power spectrum, centered

~100 0 100
Spatial frequency u

200



log power spectrum, centered

200

200

0 100

-100 L
200 o0 100

Spatial frequency v Spatial frequency u



	First page
	ccmp Initial idea, filtering in frequency domain
	ccmp 1D Fourier transform, introduction
	ccmp Odd, even and complex conjugate functions
	ccmp Any function can be decomposed\ as a sum of the even and odd part
	ccmp Fourier Tx definition: continuous cased
	ccmp Existence conditions of Fourier Tx
	ccmp Fourier Tx, symmetries
	ccmp Convolution, definition, continuous case
	ccmp Cross-correlation and convolution
	ccmp Convolution, discrete approximation
	ccmp Fourier Tx, properties (1)
	ccmp Fourier Tx, properties (2)
	ccmp Basic Fourier Tx pairs (1)
	ccmp Basic Fourier Tx pairs (2)
	ccmp Basic Fourier Tx pairs (3)
	ccmp Uncertainty principle
	ccmp Non-periodic signals
	ccmp Discrete Fourier transform
	ccmp Computational complexity, a reminder
	ccmp Computational complexity, the notation
	ccmp Computational complexity of the Discrete Fourier Transform
	ccmp Fast Fourier transform
	ccmp Fast Fourier transform, the signal division
	ccmp Decimation in time (DIT)
	ccmp Decimation in frequency (DIF)
	ccmp FFT, decimation in time, the proof idea
	ccmp FFT, the proof idea (2)
	ccmp FFT butterfly calculation scheme
	ccmp 2D Fourier transform
	ccmp Inverse Fourier tranform
	ccmp Spatial frequencies spectrum
	ccmp 2D sinusoid, illustration
	ccmp 2D sinusoid, illustration (2)
	ccmp Illustration of 2D FT bases vectors
	ccmp Linear combination of base vectors
	ccmp 2D discrete Fourier transform
	ccmp 2D Fourier Tx as twice 1D Fourier Tx
	ccmp Displaying spectra, 2D Gaussian example
	ccmp Input intensity image, coordinate system
	ccmp Real part of the spectrum, image and mesh
	ccmp Imaginary part of the spectrum, image and mesh
	ccmp Log power of the spectrum, image and mesh
	ccmp Periodic image
	ccmp Periodic spectrum
	ccmp Centered spectra
	ccmp Real part of the centered spectrum, image and mesh
	ccmp Imaginary part of the centered spectrum\ image and mesh
	ccmp Log power of the centered spectrum\ image and mesh
	ccmp Prague Castle example, input image 265$	imes $256
	ccmp Real part of the centered spectrum, image and mesh
	ccmp Imaginary part of the centered spectrum\ image and mesh
	ccmp Log power of the centered spectrum\ image and mesh
	ccmp Rice example, input image 265$	imes $256
	ccmp Real part of the centered spectrum, image and mesh
	ccmp Imaginary part of the centered spectrum\ image and mesh
	ccmp Log power of the centered spectrum\ image and mesh
	ccmp Horizontal line example, input image 265$	imes $256
	ccmp Horizontal line example, real part of the spectrum
	ccmp Horizontal line example, \imaginary part of the spectrum
	ccmp Horizontal line example, power spectrum
	ccmp Rectangle example, input image 512$	imes $512
	ccmp Real part of the centered spectrum, image and mesh
	ccmp Imaginary part of the centered spectrum\ image and mesh
	ccmp Log power of the centered spectrum\ image and mesh
	Last page

