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Outline of the lecture:
■ Motivation, edges, edgels.

■ Three groups of edge operators.

■ Finding edges by a convolution.

■ Marr-Hildreth edge detector.

■ Scale space.

■ Canny edge detector.
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Image preprocessing, the intro

The input is an image, the output is an image too.

The image is not interpreted.

The aim
■ To suppress the distortion (e.g., correction of the geometric distortion caused by spherical

shape of the Earth taken from a satellite).

■ Contrast enhancement (which is useful only if the human looks at the image).

■ Noise suppression.

■ Enhancement of some image features needed for further image processing, e.g., edge
elements finding.

http://cmp.felk.cvut.cz
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Motivation. What are the edges and edgels good for?

■ Neurophysiological and psychophysical studies hint that locations in images, in which the
image intensity changes sharply, i.e., at significant edges = edge elements (abbreviated
edgels), are important for visual perception.

■ These locations bear more useful knowledge than other locations in the image.

■ Edgels often exhibit fair invariance to changes in illumination and/or viewpoint.

■ Our intention is

• either to enhance, i.e., strengthen, high frequencies using the edge sharpening operation

• or detect ⇒ significant edges.

■ Edge (= gradient) computation/edgel detection is often used in computer vision for:
recognition of image content, 3D reconstruction of the scene, solving correspondence
problem, object tracking, etc.

http://cmp.felk.cvut.cz
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Example – a drawing matches to edgels

Pablo Picasso, La Sieste 1919

http://cmp.felk.cvut.cz
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Example – edgels automatic detection

http://cmp.felk.cvut.cz
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The origin of edge elements

Edgels are the result of discontinuities in the surface normal, in depth or in reflectance; they also
appear due to highligts or irregularities in illumination (shadows).

surface color/texture

shadow/illumination discontinuity

highlights

surface normal discontinuity

depth discontinuity
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Edge, edgel

Edge (= gradient)
■ is a property of a point (pixel in discrete image) and its neighborhood;
■ expresses the speed of the image function f(x, y) (intensity) change and the direction of the

maximal growth of it; i.e. it is the gradient ∇f(x, y);
■ is a suitable discrete approximation of a gradient ∇ f(x, y), i.e. is a two component vector.

Edge element (edgel)
■ is a point (pixel) with a significant gradient module.
■ It implies that some points (pixels) in the image are egels and some are not edgels.
■ Edgels are well localized in the image.
■ Edgels positions are stable with respect to changing views.

http://cmp.felk.cvut.cz
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Three families of edge computation/edgels detectors

Gradient calculation and edgel detectors based on:

1. Approximating maxima of first derivatives (Roberts, Prewitt, Sobel etc, Canny);

2. Finding zero-crossing of second derivatives (Marr-Hildreth);

3. Local approximation of image function by parametric model, usually a polynomial in x, y.
Computing the derivative from the model parameters analytically.
(Pioneered in computer vision by R. Haralick)

http://cmp.felk.cvut.cz
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Gradient of the image function

■ For n variables in general, the gradient of a smooth function f is a vector of partial
derivatives: ∇f(x1, . . . , xn) =

(
∂f
∂x1

, . . . , ∂f
∂xn

)
■ For n = 1 (1D signal), the gradient simplifies to a (standard) derivative expressed in two

notations: f ′ (Lagrange notation) or df
dx (Leibnitz notation).

■ For n = 2 (2D signal), ∇f(x, y) =
(

∂f
∂x,

∂f
∂y

)

•

∇f =
(

∂f
∂x, 0

)
∇f =

(
0, ∂f

∂y

)
∇f =

(
∂f
∂x,

∂f
∂y

)
• ∇f(x, y) is often expressed in polar coordinates by its magnitude and angular direction ψ

∥∇f(x, y)∥ =

√(
∂f
∂x

)2

+
(

∂f
∂y

)2

, ψ = arctan
(

∂f
∂y/

∂f
∂x

)
.
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Directional derivative

■ Consider a 2D function f(x, y), one specific
point (x0, y0) and a direction given by a vector
u = (u1, u2). The corresponding unit vector û
to vector u is û = u

|u|.

■ The directional derivative ∇u f(x0, y0) is the
rate the function f(x, y) changes at a point
(x0, y0) in the direction u. It is defined in two
alternative ways

• ∇u f(x0, y0) ≡ ∇f(x, y) u
|u| or

• df(x,y)
du ≡ û · ∇f(x, y) =

u1
∂f(x,y)

∂x + u2
∂f(x,y)

∂y .

http://cmp.felk.cvut.cz
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Discrete approximation of a gradient

Can be done by either of these two ways (with similar results).

■ Reconstruct the continuous function from the discrete one and compute its derivative.

■ Approximate the derivative by finite differences.

Finite differences:

■ non-symmetric: f ′(i) ≈ f(i) − f(i− 1). (left difference, does not use pixel value f(i+ 1))

■ symmetric: f ′(i) ≈ 1
2(f(i+ 1) − f(i− 1)) (O.K. but does not use f(i))

■ This can be done by convolution: f ′ ≈ [−1,+1] ∗ f , f ≈ [−0.5, 0,+0.5] ∗ f .

http://cmp.felk.cvut.cz
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Typical intensity profiles in the pixel neighborhood

x x x x

g g g g

Step LineRoof Noisy

■ The first profiles from the left are idealized, i.e. a step transition, a roof transition and a thin
line.

■ The profile on the right side corresponds to a noise edge. Such edges appear in real images.

■ The MATLAB function improfile is a useful tool to visualize profiles.

http://cmp.felk.cvut.cz
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Derivatives are susceptible to noise

image profile with noise

its derivative

Where is the edgel located in the noisy image?

http://cmp.felk.cvut.cz
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Image should be smoothed before deriving it

http://cmp.felk.cvut.cz
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Derivative and convolution interchanged

■ Two involved operators, the de-
rivative and the convolution, are
commutative and can be inter-
changed.

■ Both operations can be combined
to a single operator because of
their associativity:

d

dx
(h ∗ f) = dh

dx
∗ f

http://cmp.felk.cvut.cz
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Edges and object boundaries

■ The calculated edges are sometimes used to seek object boundary.
■ Provided the object corresponds to a homogeneous region in the image, the border pixels

match to edgels.
■ Strong edges (edgels) are sometimes chained in order to form object boundaries. This is why

the edgel “direction” Φ is defined perpendicular to the gradient direction Ψ.

black 0

white 255

gradient Ψ

edgel "direction" Φ

http://cmp.felk.cvut.cz
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Convolution 3 × 3 masks estimating derivative

■ Roberts (only 2 × 2), Lawrence Roberts 1963
■ Prewitt, Judith Prewitt 1970
■ Sobel, Irwin Sobel 1968
■ Robinson
■ Kirsch, Russell A. Kirsch 1971 and others
■ Laplace (approximates the trace of the image function Hessian)

■ Eight possible 3 × 3 masks exist if 8-neighborhood is considered. This quantizes gradient
directions in eight discrete values modulo 45o.

■ The image at a particular location is convolved by these eight masks, one by one. The mask
response with the highest convolution absolute value determines the edge direction.

http://cmp.felk.cvut.cz
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Roberts operator in 2 × 2 neighborhood

Two convolution masks (coordinates: r - row, c - column)

h1 =

[
1 0
0 −1

]
, h2 =

[
0 1

−1 0

]
.

g(r, c+1)g(r,c)

r

c

g(r+1, c) g(r+1, c+1)

The magnitude of the gradient is computed as:

|∇g(r, c)| ≈ |g(r, c) − g(r + 1, c+ 1)| + |g(r, c+ 1) − g(r + 1, c)| .

The disadvantage: a high sensitivity to noise because the neigborhood used for the approximation
is small.

http://cmp.felk.cvut.cz
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Prewitt operator in 3 × 3 neigborhood

h1 =

 1 1 1
0 0 0

−1 −1 −1

 , h2 =
 0 1 1

−1 0 1
−1 −1 0

 , h3 =
 −1 0 1

−1 0 1
−1 0 1

 ,

h4 =

 −1 −1 0
−1 0 1
0 1 1

 , h5 =
 −1 −1 −1

0 0 0
1 1 1

 , h6 =
 0 −1 −1

1 0 −1
1 1 0

 ,

h7 =

 1 0 −1
1 0 −1
1 0 −1

 , h8 =
 1 1 0

1 0 −1
0 −1 −1

 ,

http://cmp.felk.cvut.cz
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Example: Prewitt operator, western gradients

original 256 × 256 western gradients thresholded edges, edgels

http://cmp.felk.cvut.cz
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Example: Prewitt operator, northern gradients

original 256 × 256 northern gradients thresholded edges, edgels

http://cmp.felk.cvut.cz
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Sobel operator in 3 × 3 neigborhood

h1 =

 1 2 1
0 0 0

−1 −2 −1

 , h2 =

 0 1 2
−1 0 1
−2 −1 0

 ,

h3 =

 −1 0 1
−2 0 2
−1 0 1

 , . . .

http://cmp.felk.cvut.cz
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Robinson operator in 3 × 3 neigborhood

h1 =

 1 1 1
1 −2 1

−1 −1 −1

 , h2 =

 1 1 1
−1 −2 1
−1 −1 1

 ,

h3 =

 −1 1 1
−1 −2 1
−1 1 1

 , . . .

http://cmp.felk.cvut.cz
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Kirsch operator in 3 × 3 neigborhood

h1 =

 3 3 3
3 0 3

−5 −5 −5

 , h2 =

 3 3 3
−5 0 3
−5 −5 3

 ,

h3 =

 −5 3 3
−5 0 3
−5 3 3

 , . . .

http://cmp.felk.cvut.cz
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Laplacian of the image function

Image function f(x, y), its Laplacian is:

∇2 f(x, y) =
∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2

■ ∇2f is a scalar, not a vector. There is no “direction” provided.

■ The Laplace operator is rotation-invariant.

■ For a monotonically increasing image function f(x, y), Laplacian crosses zero at a place
where the gradient ∥∇ f(x, y)∥ attains its maximum.

http://cmp.felk.cvut.cz
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Discrete approximation of Laplacian

■ The second finite difference is computed from first finite differences:

d2

dx2
≈ [−1,+1] ∗ [−1,+1] = [+1,−2,+1]

■ Laplacian is the sum of finite differences in horizontal and vertical directions:

∇2 ≈

 0 0 0
1 −2 1
0 0 0

 +

 0 1 0
0 −2 0
0 1 0

 =

 0 1 0
1 −4 1
0 1 0


■ Alternatives:  1 1 1

1 −8 1
1 1 1

 ,

 2 −1 2
−1 −4 −1
2 −1 2

 ,

 −1 2 −1
2 −4 2

−1 2 −1



http://cmp.felk.cvut.cz
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Sharpening by a Laplacian

Sometimes we do not aim at detecting edgels. Instead, edges should be enhanced (sharpened).
Laplacian as an omnidirectional high-pass filter is suitable.

Original 256 × 256 Edges (Laplace) Sharpening (- 0,4 ·)

http://cmp.felk.cvut.cz
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Edgel detector based on 2nd derivative (Marr-Hildreth)

■ The extremum of the first derivative of a function of a single variable
(a 1D signal) matches the location in which the second derivative passes the zero level.

f’(x)

f’(x)

f(x)

f(x)

x

x x

x x

f’’(x)

f’’(x)

x

(a) (b) (c)

■ For functions of two variables, e.g. a 2D image it is not the same: Laplace operator ∇2 comes
into the play.

http://cmp.felk.cvut.cz
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Derivation, Laplacian of Gaussian operator (LoG)

Laplacian ∇2f(x, y), recall the slide 25, is even more sensitive to noise than the gradient ⇒ It is
combined with a Gaussian G again. The two operators can be combined to one → LoG (Laplacian
of Gaussian).

∇2(G ∗ f) = (∇2G) ∗ f = LoG(f)

For a given σ, (substitution due to rotational symmetry x2 + y2 = r2):

G(r) = e
− r2

2σ2 , G′(r) = − 1

σ2
r e

− r2

2σ2 , G′′(r) =
1

σ2

(
r2

σ2
− 1

)
e

− r2

2σ2 .

(c is normalization constant)

∇2G(x, y) = c

(
x2 + y2 − σ2

σ4

)
e

−x2+y2

2σ2 .

http://cmp.felk.cvut.cz
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2D operators we came across

Gaussian ∂
∂x G

∂
∂y G

∂2

∂x2 G
∂2

∂y2 G Laplacian of Gaussian

http://cmp.felk.cvut.cz
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Difference of Gaussians (DoG) as the approximation of LoG

■ The aim is to approximate LoG operator, i.e. ∇2G.

■ The difference of two images created by a Gaussians with two different σ provides a rough
approximation o LoG.

http://cmp.felk.cvut.cz


32/47
How to evaluate zero crossings?

■ While implementing zero crossing, it is recommended to avoid a naïve solution, i.e.,
thresholding of LoG in the interval close to zero. The discontinuous edgels would be obtained.

■ It is better to really detect sign changes, e.g. in a 2 × 2 mask with representative point in the
top-left corner. The edgel is detected if there is a sign change inside the image.

http://cmp.felk.cvut.cz
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Zero crossings: example

Original DoG σ1 = 0, 1 σ2 = 0, 09 Zero crossings

Disadvantages:
■ Sharp shapes are blurred to much. E.g. sharp corners are lost.
■ Edgels are connected into closed curves =⇒ “A plate of spaghetti”.

http://cmp.felk.cvut.cz
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Thresholding according to the strength

zero crossings after weak edgels removal LoG, σ = 0.2

http://cmp.felk.cvut.cz
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LoG & physiology

■ The retina evolved from the brain. The retina senses light (rod and cones) and also performs
preprocessing. There is about 1:100 data reduction ⇐ reduced transmission capacity of the
optical nerve.

■ Circular receptive fields. Their outer part contributes to the response by a negative sign than
the inner part (so called center-surround arrangement).

http://cmp.felk.cvut.cz
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The smoothing scale selection issue (1)

http://cmp.felk.cvut.cz
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The smoothing scale selection issue (2)

■ How to chose Gaussian σ while calculating the derivative? The bigger σ, the . . .

• better noise suppression;

• more weak edges vanish;

• smaller eges localization precision.

■ This issue is not constraint to edge detection only. It is a general issue appearing while
detecting features based on local properties of the image function, e.g. salient points as Harris
corners.

■ We are often not interested in details even they did not appear due to noise. Imagine we wish
to look at the image from the ‘bigger distance’ and detect only more important edgels or
other primitives.

http://cmp.felk.cvut.cz
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Scale space (for 1D signal)

f(x)

x x
s1

si

s
sn

..
..
..
..
.

..
..
..
..
.

■ While the scale grows (σ increases) the edgel can vanish by being connected to other edgel. However, a new
edgel is not created.

■ In 1D: A.P. Witkin: Scale-space filtering. Proceedings of 8th Int. conference on AI, August 1983, pp. 1019-1022.
■ In 2D: T. Lindeberg: Scale-Space Theory in Computer Vision, Kluwer Academic Publishers/Springer, Dordrecht,

Netherlands, 1994.

http://cmp.felk.cvut.cz
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Canny edgels detector

■ A simple edgels detector crowning the efforts for the best edge detector.
J. Canny: A Computational Approach To Edge Detection, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 8(6):679–698, 1986.

■ Formulated as the seek for the optimal filter under practically needed constraints.
■ It is used in many applications.

■ Input: a gray-scale image.
■ Output: a binary image with edgels.

Canny edgels detection algorithm:
1. Compute gradient directions.
2. For each pixel, compute smoothed 1D directional derivative in the gradient direction.
3. Find the magnitude maxima of these derivatives.
4. Get edgels by thresholding with hysteresis.
5. Performs the synthesis of edgels obtained for different smoothing (simple implementations do

not perform this synthesis step).

http://cmp.felk.cvut.cz
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Optimal linear filter for edgels detection

A simplified model is assumed: the ideal step edge; additive Gaussian noise
independent on the image.

What do we want to maximize (=optimization constraints)?

1. Reliable detection (find almost all existing edgels);
2. Good localization (small error in the edgel position);
3. Unique responses (minimum nonexisting edgels found).

■ Contradicting requirements: The better detection the worse localization.
■ The ‘best’ compromise is sought: the product of criteria 1 and 2 is optimized

and, finally, the criterion 3 is added (details are omitted here for brevity).
■ The result cannot be written using a single formula. However, its spirit is very

similar to the derivative of the Gaussian.

real unreliably
edgel detected

badly ambiguously
localized detected

http://cmp.felk.cvut.cz
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Finding the gradient maxima in 2D

■ 1D maxima are sought in an approximate direction of the gradient.

■ The image function in the gradient direction is sampled by a grid.

http://cmp.felk.cvut.cz
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Canny edgels by thresholding with hysteresis

■ Why? We want to suppress short (usually unimportant) chains of edgels. At the same time, we
aim at avoiding fragmentation of long edgel chains likely corresponding to object boundaries.

■ This cannot be done by thresholding. The trick is to use two thresholds T1 < T2. Edges
stronger than T2 are automatically edgels. Edgels stronger than T1 are linked if connected to
stronger edges.

http://cmp.felk.cvut.cz
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Canny edgels, example; threshold = 0.15, three σ values

original thres = 0.15, σ = 0.2 thres = 0.15, σ = 0.5 thres = 0.15, σ = 1.0

http://cmp.felk.cvut.cz
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Canny edgels, example; threshold = 0.3, three σ values

original thres = 0.3, σ = 0.2 thres = 0.3, σ = 0.5 thres = 0.3, σ = 1.0

http://cmp.felk.cvut.cz
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Canny edgels, example; threshold = 0.5, three σ values

original thres = 0.5, σ = 0.2 thres = 0.5, σ = 0.5 thres = 0.5, σ = 1.0

http://cmp.felk.cvut.cz
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Chaining edgels to lines to be used for windows detection

■ Filtered by Laplace
■ Detected zero-crossings
■ Chained to lines

Courtesy: Radim Šára

http://cmp.felk.cvut.cz
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Criticism of edges at corners

■ Edge detectors (e.g. LoG, Laplacian of Gaussians) are not precise ‘at corners’.

■ Edge detectors do not serve for finding corners, though.

■ We have corner detectors for detecting corners (see a separate lecture).

http://cmp.felk.cvut.cz
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