

Shape/structure from motion

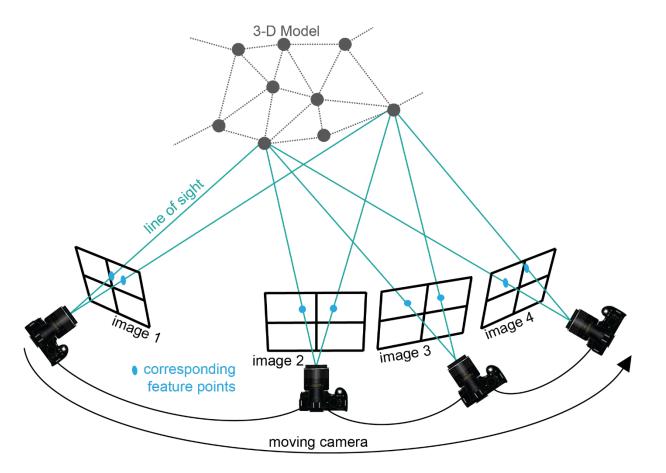
Václav Hlaváč

Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 166 36 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic http://people.ciirc.cvut.cz/hlavac; vaclav.hlavac@cvut.cz

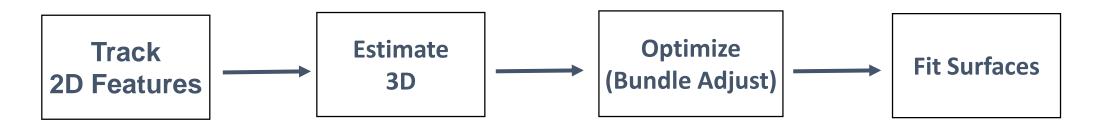
Courtesy: T. Pajdla, R. Šára, D. Hoeim, J. Hays, J. Xiao,

SfM: What it is?

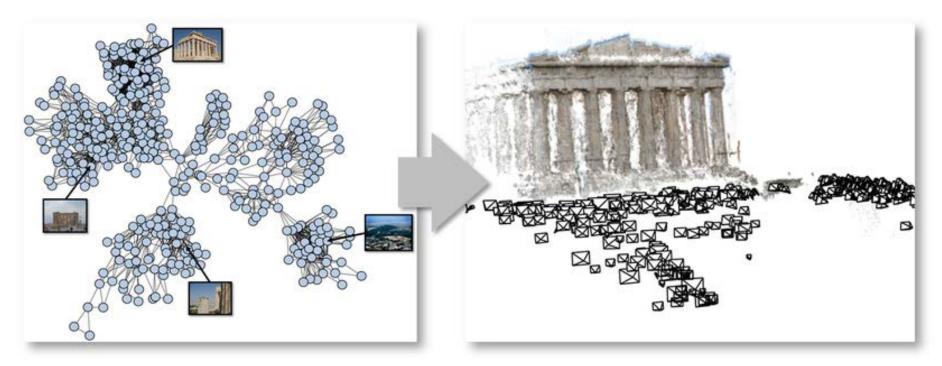
Structure/shape from motion (SfM) is a photogrammetric technique that uses overlapping images to construct a 3D model of the scene.



SfM: A typical pipeline

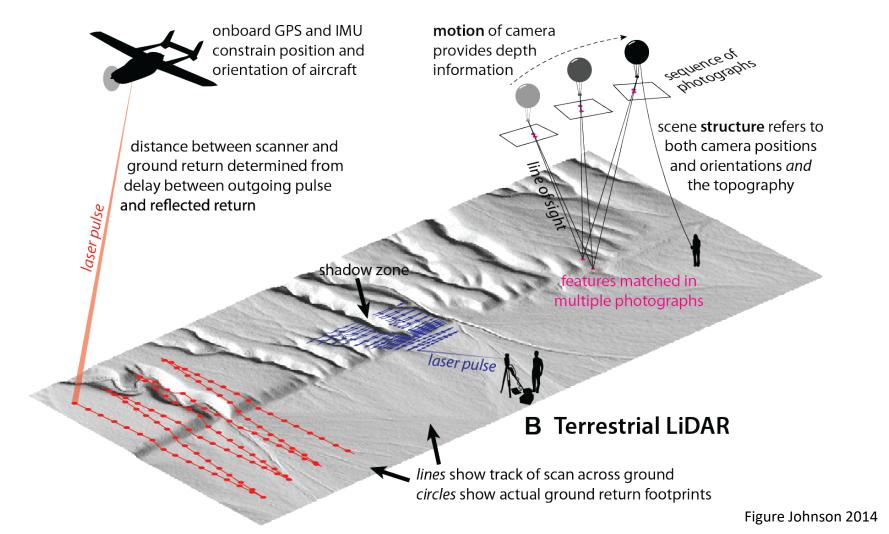


Reconstructing the world from Internet Photos



What can we compare SfM to?

A Airborne LiDAR

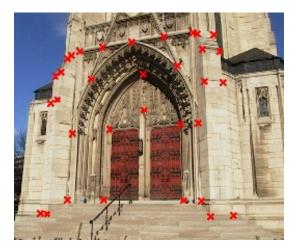


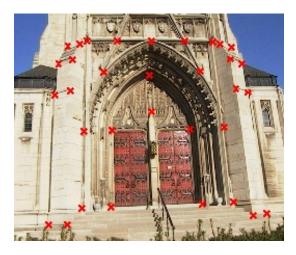
V. Hlaváč: Czech Institute of Informatics, Robotics and Cybernetics

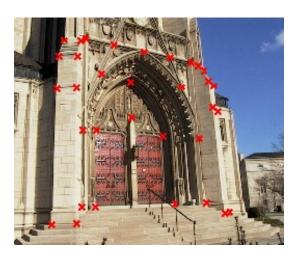
SfM – Initial notes

- For now, static scene and moving camera. Equivalently, rigidly moving scene and static camera.
- Limiting case of stereo with many cameras.
- Limiting case of multiview camera calibration with unknown target.
- Given *n* points, $n \ge 5$ and *N* camera views/positions, have 2nN equations and 3n+6N unknown.
- We always like to use many more points and views.

Structure from motion (1)







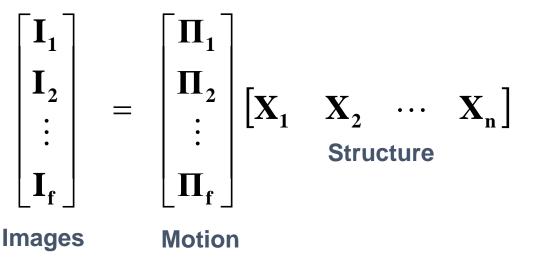
Step 1: Track Features

- Detect good features
 - corners, line segments
- Find correspondences between frames
 - Lucas & Kanade-style motion estimation
 - window-based correlation V. Hlaváč: Czech Institute of Informatics, Robotics and Cybernetics

Structure from motion (2)

Step 2: Estimate motion and structure

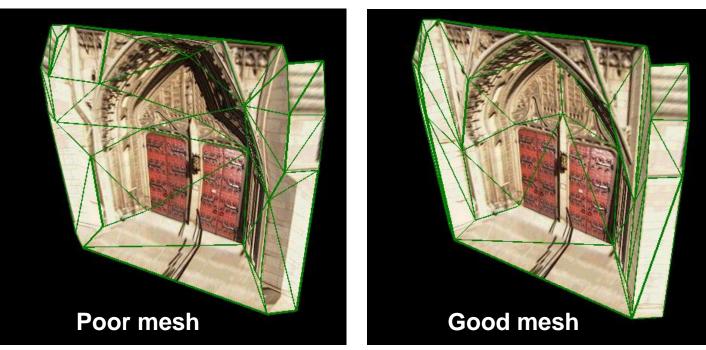
- Simplified projection model, e.g., [Tomasi 92]
- 2 or 3 views at a time [Hartley 00]



Step 3: Refine estimates

 "Bundle adjustment" in photogrammetry; reprojection error minimization

Structure from motion (3)



Morris and Kanade, 2000

Step 4: Recover Surfaces

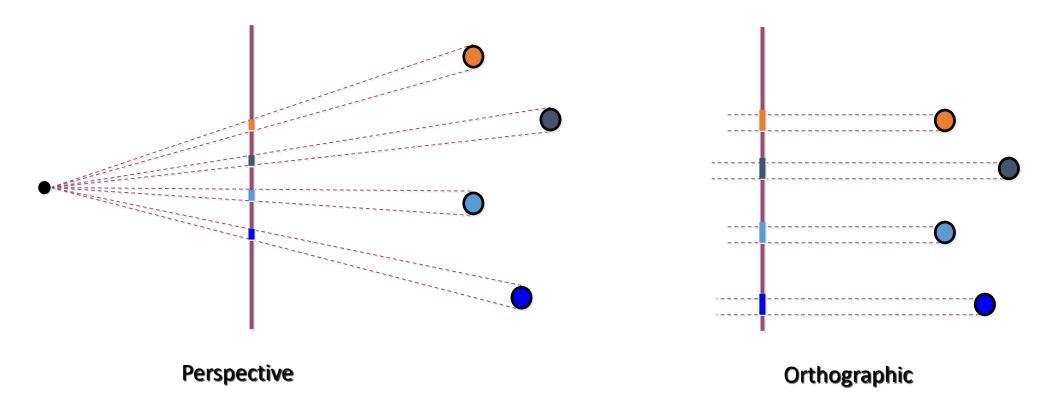
- Image-based triangulation [Morris 00, Baillard 99]
- Silhouettes [Fitzgibbon 98]
- Stereo [Pollefeys 99]

Approaches to SfM

- Obtaining point correspondences
 - Optical flow
 - Stereo methods: correlation, feature matching
- Solving for points and camera motion
 - Nonlinear minimization (bundle adjustment)
 - Various approximations...

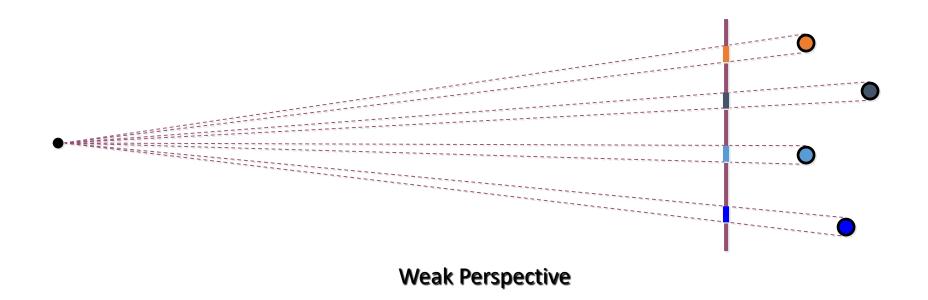
Orthographic approximation

Simplest SFM case: camera approximated by orthographic projection



Weak perspective

An orthographic assumption is sometimes well approximated by a telephoto lens

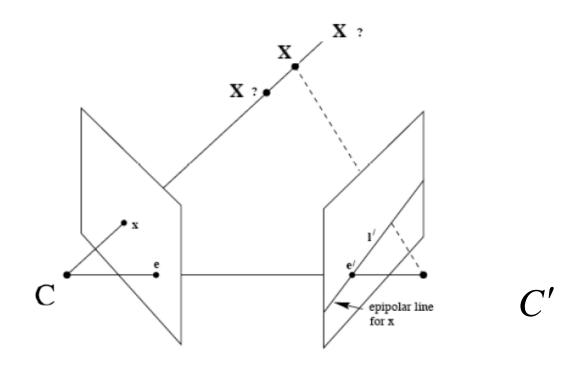


Consequences of orthographic projection

- Scene can be recovered up to scale
- Translation perpendicular to image plane can never be recovered

Recap: Epipoles

- Point x in left image corresponds to **epipolar line** I' in right image
- Epipolar line passes through the epipole (the intersection of the cameras' baseline with the image plane



Recap: Fundamental matrix

• Fundamental matrix maps from a point in one image to a line in the other

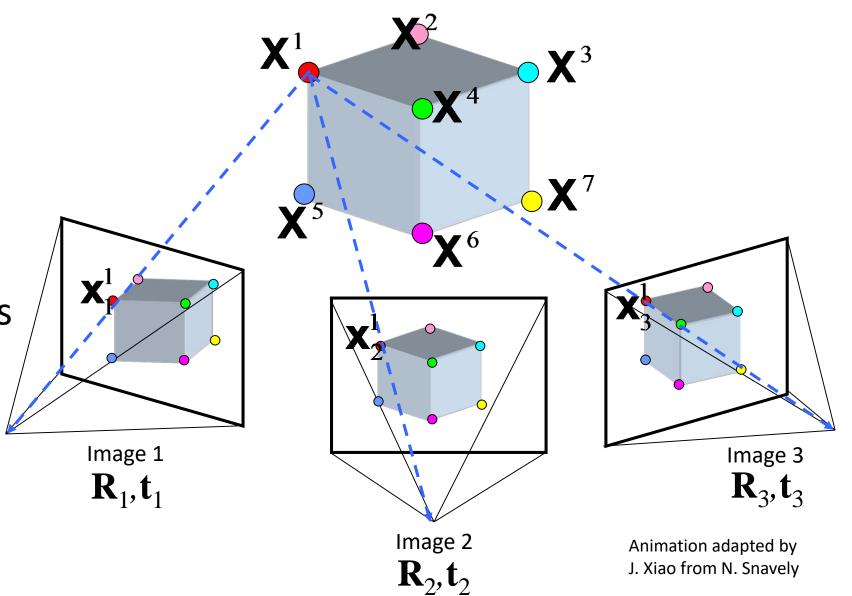
$$\mathbf{l}' = \mathbf{F}\mathbf{x} \qquad \mathbf{l} = \mathbf{F}^{\top}\mathbf{x}'$$

• If x and x' correspond to the same 3d point X:

 $\mathbf{x}^{\prime \top} \mathbf{F} \mathbf{x} = 0$

Structure from motion

Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates



Structure from motion ambiguity

 If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of 1/k, the projections of the scene points in the image remain exactly the same:

$$\mathbf{x} = \mathbf{P}\mathbf{X} = \left(\frac{1}{k}\mathbf{P}\right)(k\mathbf{X})$$

• It is impossible to recover the absolute scale of the scene!

How do we know the scale of image content?

Projection matrix

Perspective projection:

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & \alpha & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} r_1^T & t_1 \\ r_2^T & t_2 \\ r_3^T & t_3 \end{bmatrix} \bullet \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$$

• 2D coordinates are just a nonlinear function of its 3D coordinates and camera parameters:

$$u_{i} = \frac{(f_{x}r_{1}^{T} + \alpha r_{2}^{T} + u_{0}r_{3}^{T}) \bullet P + f_{x}t_{1} + \alpha t_{2} + u_{0}t_{3}}{r_{3}^{T} \bullet P + t_{3}} \leftarrow f(K, R, T; P_{i})$$

$$v_{i} = \frac{(f_{y}r_{2}^{T} + v_{0}r_{3}^{T}) \bullet P + f_{y}t_{2} + t_{3}}{r_{3}^{T} \bullet P + t_{3}} \leftarrow g(K, R, T; P_{i})$$

Nonlinear approach for SFM

What's the difference between camera calibration and SFM?

• Camera calibration: known 3D and 2D

$$\underset{K,\{R_j\},\{T_j\}}{\operatorname{argmin}} \sum_{j=1}^{M} \sum_{i=1}^{N} (u_i^{j} - f(K, R_j, T_j P_i))^2 + (v_i^{j} - g(K, R_j, T_j P_i))^2$$

• SFM: unknown 3D and known 2D

$$\underset{\{P_i\},K,\{R_j\},\{T_j\}}{\operatorname{sing}} \sum_{j=1}^{M} \sum_{i=1}^{N} (u_i^j - f(K,R_j,T_j,P_i))^2 + (v_i^j - g(K,R_j,T_j,P_i))^2$$

• What's 3D-to-2D registration problem?

Count # of constraints vs # of unknowns

 $\underset{\{P_i\},K,\{R_j\},\{T_j\}}{\operatorname{argmin}} \sum_{j=1}^{M} \sum_{i=1}^{N} (u_i^{j} - f(K,R_j,T_j,P_i))^2 + (v_i^{j} - g(K,R_j,T_j,P_i))^2$

- *M* camera poses
- N points
- 2MN point constraints
- 6*M*+3*N* unknowns (known intrinsic camera parameters)
- Suggests: need $2mn \ge 6m + 3n$
- But: Can we *really* recover all parameters???
 - Can't recover origin, orientation (6 params)
 - Can't recover scale (1 param)
- Thus, we need $2mn \ge 6m + 3n 7$

SFM: Bundle adjustment

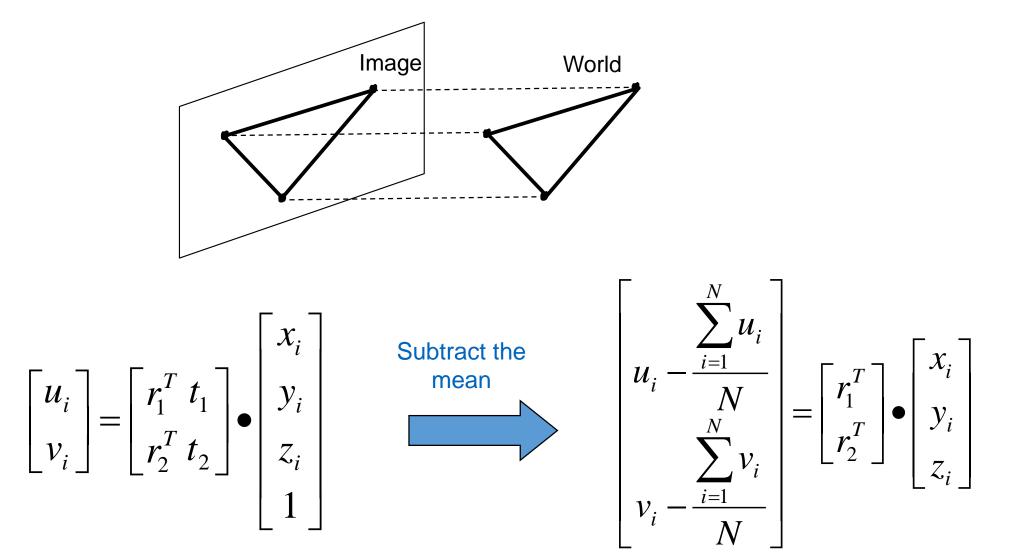
 $\arg\min\sum_{i=1}^{M}\sum_{j=1}^{N}(u_{i}^{j}-f(K,R_{j},T_{j},P_{i}))^{2}+(v_{i}^{j}-g(K,R_{j},T_{j},P_{i}))^{2}$ $\{P_i\}, K, \{R_i\}, \{T_i\} \quad j=1 \quad i=1$

- SFM = Nonlinear Least Squares problem
- Minimize through
 - Gradient Descent
 - Conjugate Gradient
 - Gauss-Newton
 - Levenberg Marquardt common method
- Prone to local minima

No, bundle adjustment has many local minima.

V. Hlaváč: Czech Institute of Informatics, Robotics and Cybernetics

SFM using factorization (1)



SFM using factorization (2)

Stack all the features from the same frame: $\begin{bmatrix} \widetilde{u}_1 \ \widetilde{u}_2 \ \dots \ \widetilde{u}_N \\ \widetilde{v}_1 \ \widetilde{v}_2 \ \dots \ \widetilde{v}_N \end{bmatrix} = \begin{bmatrix} r_1^T \\ r_2^T \end{bmatrix} \bullet \begin{bmatrix} x_1 \ x_2 \ \dots \ x_N \\ y_1 \ y_2 \ \dots \ y_N \\ z_1 \ z_2 \ \dots \ z_N \end{bmatrix}$

Stack all the features from all the images:

$$\begin{bmatrix} \widetilde{u}_{F,1} \ \widetilde{u}_{F,2} \ \dots \ \widetilde{u}_{F,N} \\ \widetilde{v}_{F,1} \ \widetilde{v}_{F,2} \ \dots \ \widetilde{v}_{F,N} \\ \vdots \\ \widetilde{u}_{F,1} \ \widetilde{u}_{F,2} \ \dots \ \widetilde{u}_{F,N} \\ \widetilde{v}_{F,1} \ \widetilde{v}_{F,2} \ \dots \ \widetilde{v}_{F,N} \end{bmatrix} = \begin{bmatrix} r_{1,1}^T \\ r_{1,2}^T \\ \vdots \\ r_{F,1}^T \\ r_{F,1}^T \\ r_{F,2}^T \end{bmatrix} \bullet \begin{bmatrix} x_1 \ x_2 \ \dots \ x_N \\ y_1 \ y_2 \ \dots \ y_N \\ z_1 \ z_2 \ \dots \ z_N \end{bmatrix}$$
$$\frac{\widetilde{W}_{2F \times N}}{W_{2F \times N}} M_{2F \times 3} M_{2F \times 3} S_{3 \times N}$$

V. Hlaváč: Czech Institute of Informatics, Robotics and Cybernetics

SFM using factorization (3)

Stack all the features from all the images:

$$\begin{split} \widetilde{W}_{2F\times N} & \left[\begin{matrix} \widetilde{u}_{F,1} & \widetilde{u}_{F,2} \dots \widetilde{u}_{F,N} \\ \widetilde{v}_{F,1} & \widetilde{v}_{F,2} \dots \widetilde{v}_{F,N} \\ \vdots \\ \widetilde{u}_{F,1} & \widetilde{u}_{F,2} \dots \widetilde{u}_{F,N} \\ \widetilde{v}_{F,1} & \widetilde{v}_{F,2} \dots \widetilde{v}_{F,N} \end{matrix} \right] = \begin{bmatrix} r_{1,1}^T \\ r_{1,2}^T \\ \vdots \\ r_{F,1}^T \\ r_{F,2}^T \end{bmatrix} \bullet \begin{bmatrix} x_1 & x_2 \dots x_N \\ y_1 & y_2 \dots y_N \\ z_1 & z_2 \dots z_N \end{bmatrix} \\ \widetilde{W}_{2F\times N} & M_{2F\times 3} & S_{3\times N} \end{split}$$

Factorize the matrix $\widetilde{W}_{2F\times N}$ into two matrix using SVD:
 $\widetilde{W}_{2F\times N} = U\Sigma V^T \quad \widetilde{M}_{2F\times 3} = U\Sigma^{\frac{1}{2}} \quad \widetilde{S}_{3\times N} = \Sigma^{\frac{1}{2}} V^T$

V. Hlaváč: Czech Institute of Informatics, Robotics and Cybernetics

SFM using factorization (4)

Stack all the features from all the images:

$$\begin{bmatrix} \widetilde{u}_{F,1} \ \widetilde{u}_{F,2} \ \dots \ \widetilde{u}_{F,N} \\ \widetilde{v}_{F,1} \ \widetilde{v}_{F,2} \ \dots \ \widetilde{v}_{F,N} \\ \vdots \\ \widetilde{u}_{F,1} \ \widetilde{u}_{F,2} \ \dots \ \widetilde{u}_{F,N} \\ \widetilde{v}_{F,1} \ \widetilde{v}_{F,2} \ \dots \ \widetilde{v}_{F,N} \end{bmatrix} = \begin{bmatrix} r_{1,1}^T \\ r_{1,2}^T \\ \vdots \\ r_{F,1}^T \\ r_{F,1}^T \\ r_{F,2}^T \end{bmatrix} \bullet \begin{bmatrix} x_1 \ x_2 \ \dots \ x_N \\ y_1 \ y_2 \ \dots \ y_N \\ z_1 \ z_2 \ \dots \ z_N \end{bmatrix}$$
$$\frac{\widetilde{W}_{2F \times N}}{W_{2F \times N}} M_{2F \times 3} S_{3 \times N}$$

Factorize the matrix $\widetilde{W}_{2F\times N}$ into two matrices using SVD: $\widetilde{W}_{2F\times N} = U\Sigma V^T \quad \widetilde{M}_{2F\times 3} = U\Sigma^{\frac{1}{2}} \quad \widetilde{S}_{3\times N} = \Sigma^{\frac{1}{2}} V^T$ $M_{2F\times 3} = \widetilde{M}_{2F\times 3} Q_{3\times 3} \quad S_{3\times N} = Q_{3\times 3}^{-1} \widetilde{S}_{3\times N}$ Is the solution unique? No! How to compute the matrix ?

SFM using factorization (5)

$$\begin{bmatrix} \widetilde{u}_{F,1} \ \widetilde{u}_{F,2} \ \dots \ \widetilde{u}_{F,N} \\ \widetilde{v}_{F,1} \ \widetilde{v}_{F,2} \ \dots \ \widetilde{v}_{F,N} \\ \vdots \\ \widetilde{u}_{F,1} \ \widetilde{u}_{F,2} \ \dots \ \widetilde{u}_{F,N} \\ \widetilde{v}_{F,1} \ \widetilde{v}_{F,2} \ \dots \ \widetilde{v}_{F,N} \end{bmatrix} = \begin{bmatrix} r_{1,1}^T \\ r_{1,2}^T \\ \vdots \\ r_{F,1}^T \\ r_{F,1}^T \\ r_{F,2}^T \end{bmatrix} \bullet \begin{bmatrix} x_1 \ x_2 \ \dots \ x_N \\ y_1 \ y_2 \ \dots \ y_N \\ z_1 \ z_2 \ \dots \ z_N \end{bmatrix}$$
$$\begin{bmatrix} \widetilde{w}_{2F \times N} \\ \widetilde{w}_{2F \times N} \end{bmatrix} \begin{bmatrix} \widetilde{w}_{2F \times 3} \\ \widetilde{w}_{3 \times N} \end{bmatrix}$$

$$\widetilde{W}_{2F\times N} = U\Sigma V^T \quad \widetilde{M}_{2F\times 3} = U\Sigma^{\frac{1}{2}} \quad \widetilde{S}_{3\times N} = \Sigma^{\frac{1}{2}} V^T$$
$$M_{2F\times 3} = \widetilde{M}_{2F\times 3} Q_{3\times 3} \quad S_{3\times N} = Q_{3\times 3}^{-1} \widetilde{S}_{3\times N}$$

 $\mathcal{Q}_{3 \times 3}$ V. Hlaváč: Czech Institute of Informatics, Robotics and Cybernetics

SFM using factorization (6)

M is the stack of rotation matrix:

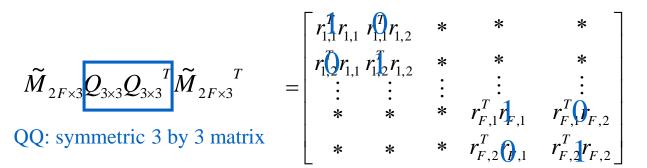
$$M_{2F\times3}M_{2F\times3}^{T} = \begin{bmatrix} r_{1,1}^{T} \\ r_{1,2}^{T} \\ \vdots \\ r_{F,1}^{T} \\ r_{F,2}^{T} \end{bmatrix} \bullet \begin{bmatrix} r_{1,1} & r_{1,2} & \cdots & r_{F,2} & r_{F,2} \end{bmatrix}$$

Orthogonal constraints from rotation matrix

$$= \begin{bmatrix} r_{1,1}^{T} r_{1,1} & r_{1,2}^{T} r_{1,2} & * & * & * \\ r_{1,2}^{T} r_{1,1} & r_{1,2}^{T} r_{1,2} & * & * & * \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ * & * & * & r_{F,1}^{T} r_{F,1} & r_{F,0}^{T} r_{F,2} \\ * & * & * & r_{F,2}^{T} O_{1,1} & r_{F,2}^{T} r_{F,2} \end{bmatrix}$$
$$= \widetilde{M}_{2F \times 3} Q_{3 \times 3} Q_{3 \times 3}^{T} \widetilde{M}_{2F \times 3}^{T}$$

SFM using factorization (7)

Orthogonal constraints from rotation matrices:



How to compute QQ^T?

Least square solution

- 4F linear constraints, 9 unknowns (6 independent due to symmetric matrix)

How to compute Q from QQ^T ? SVD again: $QQ = U\Sigma V^T$ $Q = U\Sigma^{\frac{1}{2}}$

SFM using factorization (8)

M is the stack of rotation matrix:

 $M_{2F\times3}M_{2F\times3}^{T} = \begin{bmatrix} r_{1,1}^{T} \\ r_{1,2}^{T} \\ \vdots \\ r_{F,1}^{T} \\ r_{F,2}^{T} \end{bmatrix} \bullet \begin{bmatrix} r_{1,1} & r_{1,2} & \cdots & r_{F,2} & r_{F,2} \end{bmatrix}$ $\begin{bmatrix} r_{1,1}^{T}r_{1,1} & r_{1,1}^{T}r_{1,2} & * & * & * \\ r_{1,1}^{T}r_{1,1} & r_{1,2}^{T}r_{1,2} & * & * & * \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ * & * & * & r_{F,1}^{T}n_{F,1}^{T} & r_{F,1}^{T}n_{F,2}^{T} \\ * & * & * & r_{F,2}^{T}n_{F,1}^{T} & r_{F,2}^{T}r_{F,2} \end{bmatrix}$ Orthogonal constraints from rotation matrix $= \widetilde{M}_{2F\times 3} Q_{3\times 3} Q_{3\times 3}^{T} \widetilde{M}_{2F\times 3}^{T}$ QQ^T: symmetric 3 by 3 matrix

Computing QQ^T is easy:

- 3F linear equations
- 6 independent unknowns

SFM using factorization (8)

- 1. Form the measurement matrix $\tilde{W}_{2F \times N}$
- 2. Decompose the matrix into two matrices $\tilde{M}_{2F\times 3}$ and $\tilde{S}_{3\times N}$ using SVD
- 3. Compute the matrix Q with least square and SVD
- 4. Compute the rotation matrix and shape matrix:

$$M = \widetilde{M}_{2F \times 3} Q$$
 and $S = Q^{-1} \widetilde{S}_{2F \times 3}$

SFM Summary

- Bundle adjustment (nonlinear optimization)
- - work with perspective camera model
- - work with incomplete data
- - prone to local minima
- Factorization:
- closed-form solution for weak perspective camera
- - simple and efficient
- - usually need complete data
- - becomes complicated for full-perspective camera model
- Phil Torr's structure from motion toolkit in matlab (click here)
- Voodoo camera tracker (click <u>here</u>)