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SfM: What it is? 
Structure/shape from motion (SfM) is a photogrammetric technique 
that uses overlapping images to construct a 3D model of the scene.
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SfM: A typical pipeline

Track
2D Features

Estimate
3D

Optimize
(Bundle Adjust) Fit Surfaces
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Reconstructing the world from Internet Photos



What can we compare SfM to?
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Figure Johnson 2014



SfM – Initial notes

• For now, static scene and moving camera. Equivalently, rigidly 
moving scene and static camera.

• Limiting case of stereo with many cameras.
• Limiting case of multiview camera calibration with unknown 

target.
• Given n points, 𝑛𝑛 ≥ 5 and N camera views/positions, have 2nN

equations and 3n+6N unknown.
• We always like to use many more points and views.
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Structure from motion (1)

Step 1:  Track Features
• Detect good features

• corners, line segments
• Find correspondences between frames

• Lucas & Kanade-style motion estimation
• window-based correlation
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Structure from motion (2)
Step 2:  Estimate motion and structure
• Simplified projection model, e.g.,  [Tomasi 92]
• 2 or 3 views at a time  [Hartley 00]
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Step 3:  Refine estimates
• “Bundle adjustment” in photogrammetry; reprojection error 

minimization
V. Hlaváč: Czech Institute of Informatics, Robotics and Cybernetics 7



Structure from motion (3)

Step 4:  Recover Surfaces
• Image-based triangulation  [Morris 00, Baillard 99]
• Silhouettes  [Fitzgibbon 98]
• Stereo  [Pollefeys 99]

Poor mesh Good mesh

Morris and Kanade, 2000
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Approaches to SfM

• Obtaining point correspondences
• Optical flow
• Stereo methods: correlation, feature matching

• Solving for points and camera motion
• Nonlinear minimization (bundle adjustment)
• Various approximations…
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Orthographic approximation

Simplest SFM case: camera approximated by orthographic 
projection

Perspective Orthographic
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Weak perspective

An orthographic assumption is sometimes well approximated by a 
telephoto lens

Weak Perspective
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Consequences of orthographic projection

• Scene can be recovered up to scale
• Translation perpendicular to image plane

can never be recovered
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Recap: Epipoles

C′

• Point x in left image corresponds to epipolar line l’ in right image
• Epipolar line passes through the epipole (the intersection of the cameras’ 

baseline with the image plane

C′
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Recap: Fundamental matrix

• Fundamental matrix maps from a point in one image to a line in 
the other

• If x and x’ correspond to the same 3d point X:
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Structure from motion

Image 1

Image 2

Image 3
R1,t1

R2,t2

R3,t3

Animation adapted by 
J. Xiao from N. Snavely

Given a set of 
corresponding 
points in two or 
more images, 
compute the 
camera parameters 
and the 3D point 
coordinates
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Structure from motion ambiguity

• If we scale the entire scene by some factor k and, at the same 
time, scale the camera matrices by the factor of 1/k, the 
projections of the scene points in the image remain exactly the 
same:

• It is impossible to recover the absolute scale of the scene!
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How do we know the scale of image content?
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• Perspective projection:

• 2D coordinates are just a nonlinear function of its 3D coordinates 
and camera parameters:

Projection matrix
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Nonlinear approach for SFM
What’s the difference between camera calibration and SFM?

• Camera calibration: known 3D and 2D

• SFM: unknown 3D and known 2D

• What’s 3D-to-2D registration problem?
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Count # of constraints vs # of unknowns

• M camera poses
• N points
• 2MN point constraints
• 6M+3N unknowns (known intrinsic camera parameters)
• Suggests: need 2mn ≥ 6m + 3n
• But: Can we really recover all parameters???

• Can’t recover origin, orientation (6 params)
• Can’t recover scale (1 param)

• Thus, we need 2mn ≥ 6m + 3n - 7
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SFM: Bundle adjustment

• SFM = Nonlinear Least Squares problem
• Minimize through

• Gradient Descent
• Conjugate Gradient
• Gauss-Newton
• Levenberg Marquardt common method

• Prone to local minima
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Are we done?

No, bundle adjustment has many local minima.
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SFM using factorization (1)
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SFM using factorization (2)
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SFM using factorization (3)
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Stack all the features from all the images:

Factorize the matrix             into two matrix using SVD:NFW ×2
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SFM using factorization (4)
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33×Q
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SFM using factorization (5)
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SFM using factorization (6)

[ ]2,2,2,11,1

2,

1,

2,1

1,1

3232 FF

T
F

T
F

T

T

T
FF rrrr

r
r

r
r

MM  •





















=××




















∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

=

2,2,

2,1,

1,2,

1,1,

2,12,1

2,11,1

1,12,1

1,11,1

F
T
F

F
T
F

F
T
F

F
T
F

T

T

T

T

rr
rr

rr
rr

rr
rr

rr
rr



M is the stack of rotation matrix:

1 0
10

1 0
10

Orthogonal constraints 
from rotation matrix

T
F

T
F MQQM 32333332

~~
××××=

V. Hlaváč: Czech Institute of Informatics, Robotics and Cybernetics 28



SFM using factorization (7)
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How to compute QQT?
Least square solution

- 4F linear constraints, 9 unknowns (6 independent due to symmetric matrix)

How to compute Q from QQT ?
SVD again: 2

1

Σ=Σ= UQVUQQ T

QQ: symmetric 3 by 3 matrix
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SFM using factorization (8)
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QQT: symmetric 3 by 3 matrix
Computing QQT is easy:

- 3F linear equations

- 6 independent unknowns
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SFM using factorization (8)
1. Form the measurement matrix

2. Decompose the matrix into two matrices           and                
using SVD

3. Compute the matrix Q with least square and  SVD

4. Compute the rotation matrix and shape matrix:                                     

NFW ×2
~

NS ×3
~

32
~

×FM

QMM F 32
~

×= 32
1 ~

×
−= FSQSand 
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SFM Summary
• Bundle  adjustment (nonlinear optimization)
• - work with perspective camera model
• - work with incomplete data
• - prone to local minima

• Factorization:
• - closed-form solution for weak perspective camera
• - simple and efficient
• - usually need complete data
• - becomes complicated for full-perspective camera model

• Phil Torr’s structure from motion toolkit in matlab (click here)

• Voodoo camera tracker (click here) 
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http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/TORR1/index.html
http://www.viscoda.com/en/products/non-commercial/voodoo-camera-tracker
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