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SfM: What it is?

Structure/shape from motion (SfM) is a photogrammetric technique
that uses overlapping images to construct a 3D model of the scene.
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SfM: A typical pipeline R0
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Reconstructing the world from Internet Photos

V. Hlavac: Czech Institute of Informatics, Robotics and Cybernetics



What can we compare SfM to?
Structure from Motion
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SfM — Initial notes

* For now, static scene and moving camera. Equivalently, rigidly
moving scene and static camera.

e Limiting case of stereo with many cameras.

e Limiting case of multiview camera calibration with unknown
target.

e Given n points, n = 5 and N camera views/positions, have 2nN
equations and 3n+6N unknown.

 We always like to use many more points and views.
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Structure from motion (1)

Step 1: Track Features

e Detect good features
e corners, line segments

* Find correspondences between frames
e Lucas & Kanade-style motion estimation
 window-based correlation
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Structure from motion (2)
Step 2: Estimate motion and structure
e Simplified projection model, e.g., [Tomasi 92]
e 2 or3views at atime [Hartley 00]

I1 Hl
I I1
2 2
= | X X e X
) Structure
_If_ _Hf_
Images Motion

Step 3: Refine estimates
e “Bundle adjustment” in photogrammetry; reprojection error
minimization
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Structure from motion (3)

Poor mesh | Good mesh
Morris and Kanade, 2000

Step 4: Recover Surfaces

* |mage-based triangulation [Morris 00, Baillard 99]
e Silhouettes [Fitzgibbon 98]

e Stereo [Pollefeys 99]
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Approaches to SfM

 Obtaining point correspondences
e Optical flow
e Stereo methods: correlation, feature matching

e Solving for points and camera motion
* Nonlinear minimization (bundle adjustment)
e VVarious approximations...
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Orthographic approximation

Simplest SFM case: camera approximated by orthographic
projection

Perspective Orthographic
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Weak perspective

An orthographic assumption is sometimes well approximated by a
telephoto lens
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Consequences of orthographic projection

e Scene can be recovered up to scale

* Translation perpendicular to image plane
can never be recovered
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Recap: Epipoles

 Point x in left image corresponds to epipolar line I’ in right image

* Epipolar line passes through the epipole (the intersection of the cameras’
baseline with the image plane
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Recap: Fundamental matrix

* Fundamental matrix maps from a point in one image to a line in

the other
' = Fx 1=F'x

e If xand x’ correspond to the same 3d point X:
x''Fx = ()
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Structure from motion

Given a set of
corresponding
points in two or
more images,

compute the X!
camera parameters y

and the 3D point /
coordinates

Image 1

Ryt
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Animation adapted by
J. Xiao from N. Snavely
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Structure from motion ambiguity

* If we scale the entire scene by some factor k and, at the same
time, scale the camera matrices by the factor of 1/k, the
projections of the scene points in the image remain exactly the

Same.

X=PX= (% Pj(kX)
e |tis impossible to recover the absolute scale of the scene!
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How do we know the scale of image content?
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Projection matrix

* Perspective projection:

. e lE
u, f. a Ul (In [t y
v, [=] 0 £, vollellr; [|t, [lof

1] o o 1f (K]t L]

e 2D coordinates are just a nonlinear function of its 3D coordinates
and camera parameters:

J (fr' +ar, +u,r,)eP+ft +at, +ugt, — f(K,R,T;P)
r, eP+t,

T T
V-:(fyr2 +V0:3).P+fyt2+t3: g(K,R,T,PI)
r, eP+1,
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Nonlinear approach for SFM

What's the difference between camera calibration and SFM?
e Camera calibration: known 3D and 2D

M

arg minZZN)'ui

KAR;}T;} j=1 i=l

[S—

- f(K,R, T [R)2+[vi]- (KR, T,[P))?

e SFM: unknown 3D and known 2D

M N

argmind. > @l f(.R.T,,P)2 +lul-g(k,R;.T;,P))?

{(REKAR T} J=L i<

e What’s 3D-to-2D registration problem?
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Count # of constraints vs # of unknowns

argminY. Y & £ (k,R,, T, R+l - g(K,R,, T, P))?

{PLKAR;}{T;} 171 1=
* M camera poses
N points
e 2MN point constraints
e 6M+3N unknowns (known intrinsic camera parameters)
e Suggests: need 2mn = 6m + 3n

e But: Can we really recover all parameters???
e Can’t recover origin, orientation (6 params)
e Can’t recover scale (1 param)

e Thus, we need2mn>6m +3n-7
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SFM: Bundle adjustment

M N

argminY Y @/} (KR, T, P)? +lul-g(K,R,,T,,R))’

{P}KAR 3T} 1=1 =1

* SFM = Nonlinear Least Squares problem

e Minimize through
e Gradient Descent
e Conjugate Gradient
* Gauss-Newton
e Levenberg Marquardt common method

e Prone to local minima
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Are we done?

No, bundle adjustment has many local minima.
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SFM using factorization (1)
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SFM using factorization (2)

Stack all the features from the same frame:_
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Stack all the features from all the images:
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SFM using factorization (3)

Stack all the features from all the images:

— o~ —~ ~ — - T =

U U5 Up .| _
YR ”i T X X, ... X
Ve Ve Ve P 1772 N
— — T * V. Y,... Yy
uF,luF,Z "'uF,N rF,l Z1 Z2 Z,\I
- - . L i
VeiVe2 VN | _r|:,2_

Factorize the matrix \/\72F><N Into two matrix using SVD:
1 1

~ ~ —~

Wor =UzV' M2k =Us? S3N =3V
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SFM using factorization (4)

Stack all the features from all the images:

m~ o~ ~ T
Up 1 Up 2. U e | _
YRRV v T X X5 .. X
VF,l VF,Z ...VF’N r1'2 1 2 N
o _ = ; * Y1 Yo Yn
UraUe oo Up feal| |2, 2,..2,
~ - ~ T _ i
Ve Ve2 . VEN | Te2
WZFxN MZFX3 S3><N

Factorize the matrix W, _,into two matrices using SVD:
1 1

P~ ~

Waran =UzV' Mk =Uz? San =37

~ i~
Mors =Mor Qi San = Qs Saan
Is the solution unique? No! How to compute the matrix
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SFM using factorization (5)

— o~ ~ —~ j— [ T =]
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SFM using factorization (6)

M Is the stack of rotation matrix:

T ;
MyrsMors =| ’[rl,l o, - TIe, rF,Z]

Orthogona_ll constrgints che, @, = = *
from rotation matrix &Qh fﬂaﬁ,z © oo *

* * * rFT,lﬂ:,l rFT,OF,z

T T
* * ¥ oeoBa el

~ T T
=M 2F><3Q3><3Q3><3 M 2F x3
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SFM using factorization (7)

Orthogonal constraints from rotation matrices:

| rl,jl'rl,l r!@lﬂl,Z * * * |

%k *

~ 15 7 Onick, + .
M,k 3X3Q3x3 M e, =l : P : . :
rF,lﬂ:,l rF,OF,Z

QQ: symmetric 3 by 3 matrix " ” * rg,2(9,1 I’FT,J_rF,z_

How to compute QQT™?
Least square solution
- 4F linear constraints, 9 unknowns (6 independent due to symmetric matrix)
How to compute Q from QQT ?

1

SVD again: QQ =UzV' Q=Ux?2
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SFM using factorization (8)

M Is the stack of rotation matrix:

T ;
My sMop s = T ’[rl,l o, - TIe, rF,Z]
ey

rT,

Orthogonal constraints rlzlfrl,l 'Q'&,z * * *

from rotation matrix o, rkr, * % *

* * * rFT,lﬂ:,l rFT,OF,z

T T

| * * * T, rF,ﬂfF,z_
~ Tk/l"' T
=M 2F 3Q3X3Q3x3 2Fx3

t
QQT: symmetric 3 by 3 matrix

Computing QQT is easy:

- 3F linear equations

- 6 independent unknowns
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SFM using factorization (8)

1. Form the measurement matrix W, _,

2. Decompose the matrix into two matrices I\ﬁzmand §3xN
using SVD

3. Compute the matrix Q with least square and SVD

4. Compute the rotation matrix and shape matrix:

M=M,.Q and S=Q7S, .
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SFM Summary

Bundle adjustment (nonlinear optimization)

e -work with perspective camera model
e -work with incomplete data
e -pronetolocal minima

Factorization:
- closed-form solution for weak perspective camera
- simple and efficient
- usually need complete data
e -becomes complicated for full-perspective camera model

Phil Torr’s structure from motion toolkit in matlab (click here)

Voodoo camera tracker (click here)
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http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/TORR1/index.html
http://www.viscoda.com/en/products/non-commercial/voodoo-camera-tracker
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