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Outline of the talk:

� Generative vs. discriminative classifier.
Maximal margin classifier.

� Minimization of the structural risk.

� SVM, task formulation, solution: quadratic programming.

� Linearly separable case.

� Linearly non-separable case.
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Generative / Discriminative classifier design

There are two principal approaches to supervised learning of a classifier. In final, both of them is
predicting the conditional probability p(y|x):
� Generative model learns the joint distribution p(x, y). To learn it fully, all combinations of
x, y have to be observed, which can be untractable. Having p(x, y) estimate, it predicts the
conditional probability p(y|x) with the help of Bayes Theorem. A Generative model explicitly
models the actual probability distribution of each class.
Generative classifiers: Gaussian mixture models, Naïve Bayes, Bayesian networks, Linear
discriminant analysis, Hidden Markov Models (e.g., chains), Markov random fields.

� Discriminative model learns the conditional probability p(y|x) or (in SVMs)
log p(y=+1|x)

p(y=+1|x) ≶ Θ. Both these tasks are much simpler than estimation of p(x, y) in a
generative fashion.
Discriminative classifiers: Perceptron, Support Vector Machines, Logistic regression, k-nearest
neighbor, Traditional neural networks.

http://cmp.felk.cvut.cz
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Towards the support vector machine classifier

� So far in this course, we have used mainly the generative model. A known statistical model
was assumed. It induced the appropriate decision rule.

� Since linear classifiers (Perceptron algorithm), we have started the discriminative approach.

� In Support vector machines, We will assume that the class of decision rules is known and we
have to choose (discriminate) one of them.
V. Vapnik: “Learning is the selection of one decision rule from the class of rules”.

http://cmp.felk.cvut.cz
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Maximal margin classifier

� We consider a linear classifier with the decision boundary 〈w, x〉+ b = 0.
� We aim at maximizing the margin between classes, which increases generalization ability.
� V. Vapnik proved that this approach minimizes the structural risk. This is the core idea of
Support Vector Machines.

� Support vectors are data points closest
to the decision boundary.

� The distance of a data point x to the
decision boundary is

d =
|〈w, x〉+ b|
‖w‖

.

� The margin m = 2
‖w‖.
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Support vector machines, the task formulation

� Two hidden states (classes) only, {y1, y2}.
� Task: Find a separable hyperplane (specified by parameters w, b), which maximizes the
margin for all {xi, yi}, i = 1 . . . L.

� The task expresses as a quadratic programming task

(w∗, b∗) = argmin
w,b

1

2
‖w‖2

under the constraints

〈w, xj〉+ b ≥ 1 for yj = 1

〈w, xj〉+ b < −1 for yj = −1

http://cmp.felk.cvut.cz


6/29
Support vector machines, a road map

Minimization of the structural risk
Theory how to learn classifier

Linear classifier, a maximal margin classifier
Seek for a maximal margin, respectively. a soft
margin for nonseparable data

Learning expressed as quadratic optimization
Primal task

Transformation of the primal task to the dual task
In dual task, data is expressed as scalar products

Support Vector Machines

Extension

Straightening of the feature space by
embedding into higher-dim linear space,
typically by use of kernel functions

http://cmp.felk.cvut.cz
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Minimization of the structural risk (1)

Introduction

� The classifier is learnt from a finite training (multi-)set.

� The statistical model p(x, y) is unknown. Chervonenkis and Vapnik derived an upper bound
on the risk ∑

x

∑
y

p(x, y)(y 6= Q(x)) ,

which does not involve p(x, y).

� The upper bound is provided which sums errors on the training (multi-)set and the
generalization error. When learning is performed, it should minimize training error and also
the complexity of the classifier has to be controlled.

http://cmp.felk.cvut.cz
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Minimization of the structural risk (2)

Assumptions

� x ∈ Rn . . . observation of the object (a vector of measurements).

� y ∈ {−1, 1} . . . hidden states. This notation leads to more compact derivations and formulas.

� There is a training (multi-)set available
{(x1, y1), (x2, y2), . . . , (xL, yL)},
which is drawn randomly and generated by an unknown probability distribution p(x, y).

http://cmp.felk.cvut.cz
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Minimization of the structural risk (3)

The aim is to find a classifier (decision strategy) q(x,Θ),

where Θ is a parameter (usually vector of parameters) with the minimal expected classification
error

Rexp(q(x,Θ)) =

∫
1

2
|y − q(x,Θ)| d p(x, y)

The simple approximation of Rexp is the empirical risk Remp,

Remp(q(x,Θ)) =
1

L

L∑
i=1

1

2
|yi − q(xi,Θ)| .

Note: a 1/0 loss (penalty) function is used, i.e., 1
2 |y − q(x,Θ)| =

{
0 if y = q(x,Θ) ,
1 if y 6= q(x,Θ) .

http://cmp.felk.cvut.cz
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Minimization of the structural risk (4)

Complications

The expected risk Rexp(q(x,Θ)) cannot be calculated because the joint probability distribution
p(x, y) is unknown.

Solution

Use the upper bound called guaranteed or structural risk J(Θ) as proposed by
Chervonenkis-Vapnik.

R(Θ) ≤ J(Θ) = Remp(Θ) +

√
h
(
log
(
2L
h

)
+ 1
)
− log

(
η
4

)
L

.
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Minimization of the structural risk (5)

� Remp = 1
L

∑L
i=1

1
2|yi − f(xi,Θ)| is the empirical risk.

� h is a VC dimension characterizing the class of decision functions q(x,Θ) ∈ Q.

� L is the length of the training multi-set.

� η is the degree of belief into the bound R(q(x,Θ)), i.e., 0 ≤ η ≤ 1.

� The structural risk minimization principle means a selection of a classifier based on a
minimization of the guaranteed risk J(Θ).

� Support Vector Machines implement an instance of the structural risk minimization principle.

http://cmp.felk.cvut.cz
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Linearly separable SVM (1)

The aim is to find a linear discriminant function

q(x,w, b) = sign(〈w, x〉+ b) = sign
(
wTx+ b

)

R

m

� VC dimension (capacity) depends on the margin
m

h ≤ R2

m2
+ 1

� R is given by the data itself.

� Marginm can be optimized in the classifier design.

Conclusion: separation hyperplanes with a larger margin have a lower VC dimension ⇔ lower value
of the upper bound.

http://cmp.felk.cvut.cz
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Linearly separable SVM (2)

The separating hyperplane is sought which maximizes distance to the data (margin m).
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Linearly separable SVM (3)

w

xi

d

a

Derivation of the distance d between the observation xi and the separating hyperplane
wTxi + b = 0

cosα =
wTxi
‖w‖‖xi‖

, cosα =
d

‖xi‖
⇒ d =

wTxi + b

‖w‖

The parameter b gives the distance from the origin of coordinates.

http://cmp.felk.cvut.cz
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Linearly separable SVM, the primal task

The optimization task, i.e. seeking the optimal weight vector w∗ and optimal bias b∗

(w∗, b∗) = argmax
w,b

min
i=1,...,L

wTxi + b

‖w‖
yi

can be converted in to a standard quadratic programming task, which is called the primal task

(w∗, b∗) = argmin
1

2
‖w‖2

wTxi + b ≥ +1 , yi = +1

wTxi + b ≤ −1 , yi = −1

Properties:

� Convex optimization, strictly convex.

� Unique solution for a linearly separable
sample.

http://cmp.felk.cvut.cz
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Towards the dual task

� The aim is to convert the primal task into its dual formulation, which allows to use
kernel functions.

� Lagrange function L is introduced, αi are Lagrange multipliers,

L(w, b, αi) =
1

2
‖w‖2 −

L∑
i=1

αi
(
wTxi + b

)
yi +

L∑
i=1

αi . (Eq. 1)

� Let formulate the dual task,

(w∗, b∗, α∗) = argmin
w,b

max
α≥0

L(w, b, α) Primal task.

(w∗, b∗, α∗) = argmax
α≥0

min
w,b
L(w, b, α) Dual task.

� For convex problems, both formulations lead to the same optimum.

http://cmp.felk.cvut.cz
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The solution to the dual task

min
w,b

max
αi>0

L(w, b, αi) = max
αi>0

min
w,b

L(w, b, αi)

� Seek the optimum, i.e., 1st partial derivatives = 0,

∂L
∂w

= 0 ⇒ w =

L∑
i=1

αiyixi ,
∂L
∂b

= 0 ⇒
L∑
i=1

αiyi = 0 .

� Substitute to (Eq. 1), slide 16, get rid off w, b and get

αi = argmax
αi

L∑
i=1

αi −
1

2

L∑
i=1

L∑
j=1

αiαjyiyjx
T
i xj , αi ≥ 0 ,

L∑
i=1

αiyi = 0 .

http://cmp.felk.cvut.cz
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SVM decision strategy

w =

L∑
i=1

αi yi xi .

q(x) = w>x+ b =

L∑
i=1

αi yi x
>
i x+ b .

� Support vectors are vectors xi such that

αi 6= 0 and yi(w
>x+ b) = 1

� Note: Support vectors are not unique.

http://cmp.felk.cvut.cz
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SVM – the primal and the dual tasks

Primal task Here is a dummy long sentence.

� Optimized according to vector w ∈ Rn and b ∈ R.

� Number of variables is L+ 1.

� Number of linear constraints is 2L.

Dual task Here is a dummy long sentence.

� Optimized according to α1, α2, . . . , αL, αi ∈ R.

� Number of variables is L.

� Number of linear constraints is L+ 1.

� Data appear as scalar products only, i.e., xTi xj.

http://cmp.felk.cvut.cz
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The dual task properties, cont.

� The solution is sparse. Many αi equal to 0.
αi = 0 ⇒ yi(w

Txi + b) ≥ 1.
αi > 0 ⇒ yi(w

Txi + b) = 1.

� Data xi for which αi > 0 are called Support Vectors. w =
L∑
i=1

αiyixi =
∑
i∈SV

αiyixi

α > 0

α > 0

α > 0

α = 0

α = 0

α = 0
α = 0

α = 0

α = 0
f(x) = -1f(x) = +1

Calculation of b for i ∈ SV:
yi(w

Txi + b) = 1⇒

b = 1−yiwTxi
yi

= yi〈w, x〉

� One support vector should be enough.

� Practically, many support vectors are considered.
The mean of corresponding b is used.

http://cmp.felk.cvut.cz
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SVM linearly non-separable. Soft-margin SVM

Nonseparable data ⇔ It is not possible to find a separable hyperplane without errors, i.e., αi = 0
⇒ yi(w

Txi + b) � 1.

� Solution: Regularization, i.e., introduction of
non-negative slack variables ξi, αi = 0 ⇒
yi(w

Txi + b) ≥ 1− ξi.

� Slack variables measure and penalize the degree of
misclassification of the data point xi in the
optimization.

� Suggested by Corina Cortes and Vladimir Vapnik in
1995.

� = 0

� = 0

f(x) = -1f(x) = +1

||w||

� j

||w||

� i

http://cmp.felk.cvut.cz
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Soft margin SVM with the linear penalty function

(w∗, b∗, ξ∗) = argmin
w,b,ξ

1

2
‖w‖2 + C

L∑
i=1

ξyi , where

C is a regularization constant. Large C penalizes errors; small C penalizes the complexity of the
decision function; C =∞ represents the separable case.

wTxi + b ≥ +1− ξi , yi = +1

wTxi + b ≤ −1 + ξi , yi = −1

Optimization criterion, marginal behavior
� min ‖w‖2 – maximization of the margin.
�
∑L
i=1 ξ

y
i – number misclassified training points (upper bound on the empirical error).

Quadratic programming for the dichotomic task, i.e., y = −1, 1 or |Y| = 2.

http://cmp.felk.cvut.cz
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SVM linearly non-separable, cont.

� Transform to the dual task, analogically to the separable case.

αi = argmax
αi

L∑
i=1

αi −
1

2

L∑
i=1

L∑
j=1

αiαjyiyjx
>
i xj ,

0 ≤ αi≤ C ,

L∑
i=1

αiyi = 0 .

Note: ≤ C above is the only difference when comparing to the linearly separable case.
� The decision strategy is

q(x) = w>x+ b =

L∑
i=1

αi yi x
>
i x+ b .

http://cmp.felk.cvut.cz
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Soft margin SVM, the theoretic backing

Risk =
C

L

R2 +
(∑L

i=1 ξi

)
log
(
1
L

)
m2

log2L+ log

(
1

η

)
is minimized when

‖w‖2R+

(
L∑
i=1

ξi

)
log

(
1√

(‖w‖)

)
is minimal.

This matches to Soft Margin SVM criterion with exception to the last term on the right side.

http://cmp.felk.cvut.cz
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Interpretation of the constant C

� Parameter C represents a trade-off between the misclassification (maximizing the margin)
and the classifier complexity (given by the VC-dimension; minimizing the training error).

• Large values of C favor solutions with few misclassifications.

• Small values of C express a preference towards low-complexity solutions.

� Parameter C can be viewed as a regularization parameter.

� A suitable value for C is typically determined by trying several values of C = C1, . . . , Cm.
The best value is selected by the cross-validation.

� The general problem of determining a hyperplane minimizing the error on the training set is
NP-complete (as a function of dimension).

Courtesy: Mehryar Mohri

http://cmp.felk.cvut.cz
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Loss functions, hinge loss

� Other convex functions of the slack variables could be
used.

� Our choice and similar ones, e.g., with squared slack
variables lead to a convenient formulation and
solution.

x1

1

-1 0 2

4

3

2

-2

penalty

0/1 loss function

quadratic hinge loss

hinge loss

http://cmp.felk.cvut.cz
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A high-dimensional feature space

� Observations:

• Generalization bound does not depend on the dimension but on the margin.

• It this suggests seeking a large-margin separating hyperplane in a higher-dimensional
feature space.

� Computational difficulties:

• Computing dot products in a high-dimensional feature space can be very costly.

• The solution is based on kernel functions (next lecture).

Courtesy: Mehryar Mohri

http://cmp.felk.cvut.cz
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Multi-class SVMs

Several approaches are used:

� Direct multi-class formulation.

� One-against all.

� One against one.

� DAG, Directed Acyclic Graphs.

http://cmp.felk.cvut.cz
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Multi-class SVMs, one-against-all

� So far, we have considered only SVMs handling two-class problems, i.e, dichotomic
classification.

� If the task is to classify into N classes then then learn N independent SVMs such that

• SVM 1: learns y = 1 vs. y 6= 1.

• SVM 2: learns y = 2 vs. y 6= 2.

• . . .

• SVM N : learns y = N vs. y 6= N .

� When deciding about new observation in a run mode, apply all N SVMs and select the class
by looking which SVM puts the prediction the furthest into the positive region.

http://cmp.felk.cvut.cz
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