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Outline of the talk:
� Formalisms, notation, rehersal.

� Point, rotation in the 3D vector space.

� Rotation matrix, its inversion.

� Rotation and translation jointly.

� Euler, Cardan angles.

� Holonomic, non-holonomic robots.
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Where and why is geometry needed in robotics ?

� Motion in robotics is often approximated by a movement of a
rigid body in a 3D space.

� We briefly review a needed mathematical formalism(s), i.e.
geometry of motion.

� Three main application areas in robotics from a geometric
point of view are:

1. Open kinematic chain manipulators.

2. Closed kinematic chain mechanisms.

3. Mobile robots.

The item 2 will not be tackled because it is too complicated
for this overview course.

http://cmp.felk.cvut.cz
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Accuracy and repeatability in robots

Let introduce these concepts informally.
� Accuracy is the difference (i.e. the error) between the requested result and the obtained result.
� Repeatability (e.g. of a robot) is a measure of its ability to achieve repetition of the same task.

Bad repeatability
Bad accuracy

Bad repeatability
Good accuracy

Good repeatability
Bad accuracy

Good repeatability
Good accuracy

Results of eight experiment trials 

Exact definitions are in ISO 9283: Manipulating industrial robots – Performance criteria and
related test methods. 1998, last reviewed 2015.

http://cmp.felk.cvut.cz
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Formalisms

� Vector space.
� Projective space (⇒ homogeneous coordinates).
� Quaternions. (not explained here)

We start with a quick math review.

http://cmp.felk.cvut.cz
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Notation

The notation of the subject B3M33PRO (Advanced robotics, lectured by Assoc. Prof. Tomas
Pajdla for the Cybernetics and Robotics study branch in the coming semester) is used to maintain
consistency.

~x . . . vector
A . . . matrix
Aij . . . element ij of Aij
A> . . . A transposed
|A| . . . determinant of A
I . . . identity matrix
R . . . rotation matrix
~x× ~y . . . vector (cross)

product of ~x, ~y

β . . . basis, the ordered triple
β = [~b1,~b2,~b3] of independent
generator vectors

~xβ . . . column matrix of coordinates
w.r.t. the basis β

~x · ~y . . . scalar product of vectors ~x, ~y
‖~x‖ . . . Euclidean norm of ~x,

‖~x‖ =
√
~x · ~x

R . . . real numbers

http://cmp.felk.cvut.cz
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Dot product

Dot product of vectors ~a,~b
(also scalar or inner product)

� Geometric definition: ~a ·~b = ‖~a‖ ‖~b‖ cos Θ

� Algebraic definition: ~a ·~b =
n∑
i=1

ai bi

A two-dimensional example
~a = [ax, ay]

>, ~b = [bx, by]
>

~a ·~b =
[
ax
ay

]
·
[
bx
by

]
= ax bx + ay by

a

a

b

co
s 

 



http://cmp.felk.cvut.cz


7/35
Unit vector

Unit vector ~ub is a vector in the direction of a chosen vector (in our particular case of the
vector ~b), the magnitude of which equals to one.

~ub =
~b

‖~b‖

ub

b

http://cmp.felk.cvut.cz
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Cross (vector) product

� The cross product ~a×~b is defined as a vector ~c that is
perpendicular to both ~a and ~b, with a direction given by the
right-hand rule and a magnitude equal to the area of the
parallelogram that the vectors span, i.e. ‖~a‖ ‖~b‖ sin Θ.

� Alternatively: ~a×~b = ‖~a‖ ‖~b‖ sin Θ~n , where ~n is a unit
vector perpendicular to the plane containing ~a, ~b and the
direction given by the right-hand rule.

� The cross-product is anti-commutative, i.e., ~b×~a = −(~a×~b).

Animation


http://cmp.felk.cvut.cz
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Cartesian coordinate system

� Specifies the point in an n-dimensional Euclidean space.
Coordinates are equal, up to the sign, to distances from
the point to n mutually perpendicular hyperplanes.

� In 3D, reference coordinate system O0xyz.
� Point ~p = [px, py, pz]

> represented in O0xyz:
~pxyz = px~ıx + py~y + pz~kz

� ~ı · ~ = 0, ~ı · ~k = 0, ~k · ~ = 0

|~ı | = 1, |~ | = 1, |~k| = 1

� Name after René Descartes (latinized: Cartesius), who
provided the first systematic link between Euclidean
geometry and algebra.

x

y

z

p

O
0

René Descartes, 1596-1650
Bílá hora battle (8. 11. 1620)

soldier on Catholic side.

http://cmp.felk.cvut.cz
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Reference coordinate system
Representation of a point in it

� Reference coordinate system O0xyz, unit coordinate vectors
~x, ~y, ~z.
Body attached frame O1uvw, unit coordinate vectors ~u, ~v, ~w.

� Point represented in O0xyz: ~p = [px, py, pz]
>

~pxyz = px~ıx + py~y + pz~kz

� Point represented in O1uvw: ~puvw = pu~ıu + pv~v + pw~kw

� If these two frames coincide then pu = px, pv = py, pw = pz
x

y

z
p

u

vw

O , 0 O1
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Coordinate transformation, rotation only

� ~pxyz = px~ıx + py~y + pz~kz

� ~puvw = pu~ıu + pv~v + pw~kw

� ~pxyz = R ~puvw, where R is a rotation matrix.
� px, py and pz represent projections of a point ~p onto O0x,
O0y, O0z axes, respectively.

� px =~ıx · ~p =~ıx ·~ıu pu +~ıx · ~v pv +~ıx · ~kw pw
py =~ıy · ~p =~ıy ·~ıu pu +~ıy · ~v pv +~ıy · ~kw pw
pz =~ız · ~p =~ız ·~ıu pu +~ız · ~v pv +~ız · ~kw pw

x

y

z p

u

vw

O , 0 O1
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Rotation matrix

� Repeated from the previous slide:
px =~ıx · ~p =~ıx ·~ıu pu +~ıx · ~v pv +~ıx · ~kw pw
py =~ıy · ~p =~ıy ·~ıu pu +~ıy · ~v pv +~ıy · ~kw pw
pz =~ız · ~p =~ız ·~ıu pu +~ız · ~v pv +~ız · ~kw pw

� Expressed as a matrix multiplication:pxpy
pz

 =

~ıx ·~ıu ~ıx · ~v ~ıx · ~kw
~y ·~ıu ~y · ~v ~y · ~kw
~kz ·~ıu ~kz · ~v ~kz · ~kw


pupv
pw


� Example, rotation about axis x by Θ:

R = R(x,Θ) =

1 0 0
0 cos Θ − sin Θ
0 sin Θ cos Θ



Example, rotation about axis x
by the angle Θ:

x

z

y

v

w

p

u
O ,0 O1

�

�

px = pu
py = pv cos Θ− pw sin Θ
pz = pv sin θ + pw cos Θ

http://cmp.felk.cvut.cz
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Rotation about coordinate axes

� Rotation about axis x by Θ:

~u =

1

0

0

 ; ~v =

 0

cos Θ

sin Θ

 ; ~w =

 0

− sin Θ

cos Θ

 ; R = R(x,Θ) =

1 0 0

0 cos Θ − sin Θ

0 sin Θ cos Θ


� Rotation about axis y by Θ:

R = R(y,Θ) =

 cos Θ 0 sin Θ
0 1 0

− sin Θ 0 cos Θ


� Rotation about axis z by Θ:

R = R(z,Θ) =

cos Θ − sin Θ 0
sin Θ cos Θ 0

0 0 1



http://cmp.felk.cvut.cz
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Inverting rotation matrix

� ~pxyz = R ~puvwpxpy
pz

 =

~ıx ·~ıu ~ıx · ~v ~ıx · ~kw
~y ·~ıu ~y · ~v ~y · ~kw
~kz ·~ıu ~kz · ~v ~kz · ~kw


pupv
pw


� ~puvw = Q ~pxyz. Notice: The dot product is commutative.pupv

pw

 =

~ıu ·~ıx ~ıu · ~y ~ıu · ~kz
~v ·~ıx ~v · ~y ~v · ~kz
~kw ·~ıx ~kw · ~y ~kw · ~kz


pxpy
pz


� Rotation matrices are orthogonal, i.e.
Q = R−1 = R> ⇒ QR = R>R = RR> = R−1R = I.
(a) Column vector are mutually perpendicular unit vectors; (b) detR = ±1 (+1 for
right-hand coordinates); (c) R ∈ SO(3), i.e. special orthogonal group of rotational matrices
of the third order (to be explained soon).

http://cmp.felk.cvut.cz
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Composite rotation matrix

� A sequence of finite rotations.
� Matrix multiplications do not commute ⇒ the correct order is important.
� Point ~p is represented as ~p0 w.r.t. to its coordinates Oi0j0k0.
Point ~p1 similarly as ~p1 w.r.t. Oi1j1k1.
Point ~p2 similarly as ~p2 w.r.t. Oi2j2k2.

� ~p0 = R1
0 ~p1 and ~p1 = R2

1 ~p2

� R2
0 = R1

0 R
2
1, consequently ~p0 = R2

0 ~p2

p2 p0p1

1R2
R1

1 2 
R  R10

0

http://cmp.felk.cvut.cz
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Example, a composite rotation,
around z-axis first, around y axis next

1. Rotation around the current z-axis by the angle Θ.

2. Rotation around the current y-axis by the angle Φ.

R = R(y,Φ)R(z,Θ) =

 cos Φ 0 sin Φ
0 1 0

− sin Φ 0 cos Φ

 cos Θ − sin Θ 0
sin Θ cos Θ 0

0 0 1



=

 cos Φ cos Θ − cos Φ sin Θ sin Φ
sin Θ cos Θ 0

− sin Φ cos Θ sin Φ sin Θ cos Φ



http://cmp.felk.cvut.cz
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Example, a composite rotation,
around y-axis first, around z-axis next

1. Rotation around the current y-axis by the angle Φ.

2. Rotation around the current z-axis by the angle Θ.

R = R(z,Θ)R(y,Φ) =

cos Θ − sin Θ 0
sin Θ cos Θ 0

0 0 1

  cos Φ 0 sin Φ
0 1 0

− sin Φ 0 cos Φ



=

cos Θ cos Φ − sin Θ cos Θ sin Φ
sin Θ cos Φ cos Θ 0
− sin Φ 0 cos Θ



http://cmp.felk.cvut.cz
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Rotation and translation jointly

� A point (vector) ~p originally expressed with respect to the
coordinate system O1uvw as ~p1 is newly represented with
respect to the coordinate system O0xyz as ~p0.

� The transformation writes as ~p0 = R ~p1 +~t, where R is the
rotation matrix aligning the coordinate system O0xyz to
O1uvw and ~t is a translation vector bringing the origin O0

to the origin O1.
� It is of advantage to express the rotation and translation as
a matrix operation. This requires introducing homogeneous
coordinates, i.e. embedding into a projective space.

u

v w

x

y

z

O xyz0 

O uvw1 

p0

p1
p

t
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Projective space

� It is of advantage to embed the joint rotation and translation into a projective space Pd.
� Consider (d+ 1)-dimensional vector space without its origin,
Rd+1 − {(0, . . . , 0)}.

� Consider the equivalence relation

[x1, . . . , xd+1]> ≡ [x′1, . . . , x
′
d+1]>

iff ∃α 6= 0 : [x1, . . . , xd+1]> = α [x′1, . . . , x
′
d+1]>

� The projective space Pd is the quotient space of this equivalence relation.
� Points in the projective space are expressed in homogeneous co-ordinates (called also
projective coordinates) ~x = [x′1, . . . , x

′
d, 1]>.

http://cmp.felk.cvut.cz
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Homogeneous transformation

� In non-homogeneous coordinates, cf. slide 18:
A point (vector) ~p originally expressed with respect to the
coordinate system O1uvw as ~p1 is newly represented with
respect to the coordinate system O0xyz as ~p0 as
~p0 = R ~p1 + ~t.

� Express ~p0, ~p1 in homogeneous coordinates as ~p0h, ~p1h.
� The joint rotation and translation can be written in the
matrix form

~p0h =

[
R ~t

0 0 0 1

]
~p1h

u

v w

x

y

z

O xyz0 

O uvw1 

p0

p1
p

t

When it is obvious that we deal with homogeneous coordiantes, we omit subscripts h.

http://cmp.felk.cvut.cz
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Group (algebraic structure)

� It is useful to express properties of rotations in a more abstract way. E.g., we will use it in this
course later when dealing with the (robot) configuration space.

� The group (the algebraic structure)
A set G together with a binary operation ◦ on elements of G is a group if it satisfies axioms

1. Closure: If g1, g2 ∈ G, then g1 ◦ g2 ∈ G.

2. Identity: The identity element e exists such that g ◦ e = e ◦ g = g for every g ∈ G.

3. Inverse: For each g ∈ G there exists a (unique) inverse g−1 ∈ G, such that g ◦ g−1 =
g−1 ◦ g = e.

4. Associativity: If g1, g2, g3 ∈ G, then (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

Note: Closure: A set is closed under an operation if performance of that operation on members of the set always
produces a member of that set.

http://cmp.felk.cvut.cz
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Euclidean group

� In mathematics, the elements of Euclidean group E(n) are the isometries associated
with the Euclidean distance, and are called Euclidean isometries, Euclidean transformations or
rigid transformations.

� Euclidean transformations decompose into direct isometries and indirect isometries, an
indirect isometry being an isometry that transforms any object into its mirror image.

� The direct Euclidean isometries form a group, the special Euclidean group SE(n), whose
elements are called Euclidean motions or rigid motions.

� The Euclidean group for SE(3) is used for the kinematics of a rigid body, in classical
mechanics. Consider a rigid body described in reference frame O0xyz:

SE(3) =

{[
R ~t

0 0 0 1

]
, R ∈ R

3×3
, ~t ∈ R3

, R
>
R = RR

>
= I, |R| = 1

}

Note: An isometry (or congruence, or congruent transformation) is a distance-preserving transformation between
metric spaces, usually assumed to be bijective.

http://cmp.felk.cvut.cz
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Special orthogonal group (1)

� Orthogonal group in dimension n, denoted O(n), is the group of n× n orthogonal matrices,
where the group operation is the matrix multiplication. An orthogonal matrix is a real matrix
whose inverse equals to its transpose.

� An important subgroup of O(n) is the special orthogonal group SO(n) of n× n orthogonal
matrices of determinant 1.
Because the determinant of an orthogonal matrix is either 1 or −1, and so the orthogonal
group has two components. The component containing the identity 1 is the special orthogonal
group SO(n).

� SO(n) is also called the rotational group because its elements are usual rotations around a
point (in dimension 2) or a line (in dimension 3), cf. SO(2) and SO(3).

http://cmp.felk.cvut.cz
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Special orthogonal group (2)

� SO(2), the circle group. One way to think about the circle group is that it describes how to
add angles, where only angles between 0° and 360° are permitted.

� SO(3), the 3D rotation group, is the group of all rotations about the origin of 3D Euclidean
space R3 under the composition operation.

http://cmp.felk.cvut.cz
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Euler angles, the minimal representation

� Rotation matrices provide a redundant representation of the frame orientation. They are given
by nine elements.

� These elements are not independent because they are related (a) by the orthogonality
condition R>R = I (3 constraints), unitary relationship (3 constraints), and det(R) = 1.

� This implies that three parameters (9− 3− 3 = 3) suffice to express orientation of a rigid
body in 3D space.

� Orientation expressed by three parameters constitutes a minimal representation.
� There are 12 possible sequences of rotation axes, divided into two groups:
• Euler angles: z x z , x y x , y z y , z y z , x z x , y x y

• Cardan angles (after Jerome Cardan or Gerolamo Cardano, also called Tait-Brian,
nautical, yaw-pitch-roll):
x y z , y z x , z x y , x z y , z y x , y x z

http://cmp.felk.cvut.cz
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z y z Euler angles

Composition of three elementary rotations
� Rotate the reference frame by the angle φ about
z-axis.

� Rotate the current frame by the θ about (tranformed)
axis y′.

� Rotate the current frame by the angle ψ about axis
z′′.

Input φ θ ψ

http://cmp.felk.cvut.cz
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z y z Euler angles, rotation matrices

The rotation described by z y z composes three rotations of the current frame
R = Rz(φ)Ry′(θ)Rz′′(ψ).

� Rotation by the angle φ around axis z: Rz =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1


� Rotation by the angle θ around axis y′: Ry′ =

 cos θ 0 − sin θ
0 1 0

− sin θ 0 cos θ


� Rotation by the angle ψ around axis z′′: Rz′′ =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1



http://cmp.felk.cvut.cz
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z y z Euler angles, the direct solution

Given: Three z y z Euler angles.

Task: Rotate (1) by the angle φ along the axis z giving the new axes x′, y′ and z′ ≡ z; (2) by the
angle θ along the axis y′ giving new axes x′′, y′′, z′′ and (3) by the angle ψ around the axis z′′.

Outcome: The rotation matrix R.

R = Rz(φ)Ry′(θ)Rz′′(ψ) =

=

 cφ cθ cψ − sφ sψ , −cφ cθ sψ − sφ cψ , cφ sθ

sφ cθ cψ + cφ sψ , −sφ cθ sψ + cφ cψ , sφ sθ

−sθ cψ , sθ sψ , cθ



http://cmp.felk.cvut.cz
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z y z Euler angles, the inverse solution

R =

 r11, r12, r13

r21, r22, r23

r31, r32, r33

 =

 cφ cθ cψ − sφ sψ , −cφ cθ sψ − sφ cψ , cφ sθ

sφ cθ cψ + cφ sψ , −sφ cθ sψ + cφ cψ , sφ sθ

−sθ cψ , sθ sψ , cθ


The solution to the inverse problem, i.e. calculating Euler angles from the rotation matrix R, is
given by explicit formulas as

� θ = cos−1(r33) because r33 = cos θ

� φ = tan−1
(
r23
r13

)
because r13 = cosφ sin θ; r23 = sinφ sin θ

tanφ = sinφ
cosφ = r23

sin θ/
r13

sin θ = r23
r13

� ψ = tan−1
(
r32
−r31

)
because r31 = − sin θ sinψ; r32 = sin θ sinψ

analogically to φ

Note: A little more care is needed due to multiple solutions and singularities in practice.

http://cmp.felk.cvut.cz
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x y z Cardan angles, yaw-pitch-roll

Composition of three elementary rotations
� Rotate the reference frame by the angle ψ about
x-axis (yaw, Czech zatáčení).

� Rotate the reference frame by the angle θ about
axis y′ (pitch, Czech podélný sklon).

� Rotate the reference frame by the angle φ about
axis z′′ (roll, Czech příčný náklon).

Yaw AxisRoll Axis

Pitch Axis

http://cmp.felk.cvut.cz
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Holonomicity in robotics

� Holonomicity refers to the relationship between the controllable and total degrees of freedom
of a given robot (or part thereof).

� Holonomic: if the controllable degrees of freedom is equal or greater to the total degrees of
freedom.

� Non-holonomic: if the controllable degrees of freedom are less than the total degrees of
freedom.

� Redundant robot: if it has more controllable degrees of freedom than degrees of freedom in its
task space.

http://cmp.felk.cvut.cz
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Example: A car = non-holonomic

� Three degrees of freedom: its position in two axes, and its orientation relative to a fixed
heading.

� Only two controllable degrees of freedom: acceleration/braking and the angle of the steering
wheel.

� A car heading (the direction, in which it is traveling) must remain aligned with the orientation
of the car, or 180o from it if the car is in reverse. The car has no other allowable direction,
assuming there is no skidding or sliding.

� Thus, not every path in the space is achievable.

http://cmp.felk.cvut.cz
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Approximation by a holonomic trajectory

� For a car, not every trajectory in the space is achievable.
� However, every trajectory can be approximated by a holonomic trajectory – this is called a
(dense) homotopy principle (comes from mathematics, differential equations), cf.
https://en.wikipedia.org/wiki/Homotopy_principle.

� The non-holonomicity of a car makes parallel parking and turning in the road difficult, but the
homotopy principle says that these are always possible, assuming that clearance exists.

http://cmp.felk.cvut.cz
https://en.wikipedia.org/wiki/Homotopy_principle
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A human arm is holonomic

� A human arm is holonomic and redundant.
� It is a redundant system because it has 7 degrees of freedom (3 in the shoulder - rotations
about each axis, 2 in the elbow - bending and rotation about the lower arm axis, and 2 in the
wrist, bending up and down (i.e. pitch), and left and right (i.e. yaw)).

� There are only 6 physical degrees of freedom in the task of placing the hand (x, y, z, roll,
pitch and yaw), while fixing the seven degrees of freedom fixes the hand.

http://cmp.felk.cvut.cz
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Holonomic locomotion

� Holonomic forms of locomotion allow
vehicles to immediately move in any
direction without needing to turn first.

� Example:
Mecanum (Sweedish) wheel, e.g Holbot (by
a FEL ČVUT student Igor Kruhák, 2003).

� Counterexample:
Segway (inverted pendulum principle) is not
holonomic. It has 2 DOFs. There are 3
DOFs to place, orient it in the environment.

2
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