Sensors for Robots An overview

Václav Hlaváč

Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Czech Republic http://cmp.felk.cvut.cz/~hlavac

Courtesy to several authors of presentations on the web.

Note: students graduated from the bachelor KyR studied sensors in the course Sensors and Measurement. This subject was not specialized to robotics.

- Motivation, why robots need sensors?
- Robotic sensor classification.
- Proprioception in humans.
- Various sensors overview.

Where are the forkholes?

3

Autonomous forklift for material handling

Will robot hit anything?

4

Obstacle detection

Where is the cropline?

5

11 12

Autonomous harvesting

Where am I?

Localization in the environment

Robot sensors, generally

- Sensor constitute robot's window to the environment.
- A robot needs sensing to be an active participant in the environment.
- Each sensor is based on a transduction principle, i.e. a conversion of energy from one form to another.
- Sensors measure a physical quantity, they do not provide state.

Classification of sensors

- Proprioceptive ("sense of self", internal state).
 - Measures values internally to the system (robot), e.g. battery level, wheel position, joint angle, etc.
- Exteroceptive (external state).
 - Observations of robot environment, objects in it.

- Active (emits energy, e.g. radar) vs.
- Passive (passively receives energy, e.g., camera).

General sensor classification

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Tactile sensors (detection of physical contact or	Contact switches, bumpers Optical barriers	EC EC	P A
closeness; security switches)	Noncontact proximity sensors	EC	А
Wheel/motor sensors	Brush encoders	PC	Р
(wheel/motor speed and position)	Potentiometers	PC	Р
	Synchros, resolvers	PC	А
	Optical encoders	PC	А
	Magnetic encoders	PC	А
	Inductive encoders	PC	А
	Capacitive encoders	PC	А
Heading sensors	Compass	EC	Р
(orientation of the robot in relation to	Gyroscopes	PC	Р
a fixed reference frame)	Inclinometers	EC	A/P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

General sensor classification 2

General classification (typical use)	Sensor Sensor System	PC or EC	A or P
Ground-based beacons (localization in a fixed reference frame)	GPS Active optical or RF beacons Active ultrasonic beacons Reflective beacons	EC EC EC EC	A A A A
Active ranging (reflectivity, time-of-flight, and geo- metric triangulation)	Reflectivity sensors Ultrasonic sensor Laser rangefinder Optical triangulation (1D) Structured light (2D)	EC EC EC EC EC	A A A A A
Motion/speed sensors (speed relative to fixed or moving objects)	Doppler radar Doppler sound	EC EC	A A
Vision-based sensors (visual ranging, whole-image analy- sis, segmentation, object recognition)	CCD/CMOS camera(s) Visual ranging packages Object tracking packages	EC	Р

Characterizing sensor performance

- Measurement in real world environment is error prone.
- Basic sensor response ratings:
 - **Dynamic range:** Ratio between lower and upper limits, usually in decibels.
 - Range: Difference between min and max.
 - **Resolution:** Minimum difference between two values.
 - Linearity: Variation of output signal as function of the input signal.
 - **Bandwidth or frequency:** The speed with which a sensor can provide a stream of readings.

In Situ sensor performance

12

Characteristics that are especially relevant for real world environments

- **Sensitivity**: Ratio of output change to input change.
- Cross-Sensitivity: Sensitivity to environmental parameters that are orthogonal to the target parameters.
- Error/Accuracy: Difference between the sensor's output and the true value.
- Systematic/Deterministic Error: Caused by factors that can be modeled (in theory), e.g., calibration of a laser sensor.
- Random Error: e.g., hue instability of camera, black level noise of camera.
- Reproducibility: Reproducibility of sensor results.

Proprioception: detecting human's own movements

13

- To control our limbs, we need feedback on where they are.
- Muscle spindles (svalové vřeténko).
- Pressure sensors in skin.

Pacinian corpuscle – transient pressure response

Sensors, feedback in muscles

- To control our limbs we need feedback.
- Muscle spindles
 - where: length
 - how fast: rate of stretch
- Golgi tendon organ
 - how hard: force

Neuron firing, example

Proprioception Some aquatic invertebrates

- To detect the motion of the whole body, the species have vestibular system based on a statocyst.
- Statolith (calcium nodule) affected by gravity (or inertia during motion) causes deflection of hair cells that activate neurons.

Human vestibular system

- Utricle (vejčitý váček) and Saccule (kulovitý váček) detect linear acceleration.
- Semicircular canals detect rotary acceleration in three orthogonal axes
- Fast vestibular-ocular reflex for eye stabilisation.

A simple switch

Tilt sensor

Mercury tilt switch, obsolete

Dual axis inclinometer

Potentiometer

20

R

Resistance changes with the position of the dial

Whiskers

- Springy wire suspended through conductive "hoop".
- Deflection causes contact with "hoop".
- Reaches beyond robot a few centimeters.
- Simple, cheap, provides the binary output.

Whiskers examples

Examples of microswitches

24

 One-directional reed switch.

 Omni-directional reed switch.

Roller contact switch.

- Photoresistor.
- Photodiode.
- Differential photodiode.
- Phototransistor.

Photoresistor example

25

Light sensors

Thermal resistor (thermistor) example

Proximity sensors

- Non-contact.
- Devices that can be used in areas that are near to an object to be sensed.
- Types:
 - Photocells.
 - Capacitance sensors.
 - Inductive sensors.

Photocells

Inductive proximity sensors

29

- Detect Eddy current losses (vířivý proud).
- Usually on/off mode only.
- They typically oscillate in ranges: 3 KHz – 1MHz.

Principles of Operation for Inductive Proximity Sensors

Capacitance proximity sensors

- Generate an electrostatic field.
- Consists of probe, oscillator, feliciter filter, output circuit.
- In absence of a target, the oscillator is inactive.
- An approaching target raises capacitance, which triggers the oscillator.

Capacitive sensors, use example 💇 m p

- When properly calibrated, the sensor can detect any higher dielectric material thru any lower dielectric material.
- Typical Application of Capacitive Sensor: Detecting Liquid (H₂O) levels in bottles.

- Potenciometer
- Resolver
- Optical Encoders
 - Relative position
 - Absolute position

Wheel / motor encoders

- Measure position, speed, direction of revolution of the wheel.
- Odometry wheel movements can be integrated to get an estimate of the robots position.
- Typical resolutions of 2000 increments per revolution.
- Either relative or abslute.

34

mask/diffuser • Relative position light sensor Motor €'decode circuitry light emitter grating A diffuser tends to (a) mask direction (a) mask direction detectors smooth these signals B А A В t = 0t = 0(b) mask direction *M* (b) maskdirection 🦯 position of encoder emitters mask at t=0 B t = 0t = 0 saturated quadrature signals linear quadrature signals

Ideal

Real

38

• Detecting absolute position

something simpler ?

• Detecting absolute position

#	Binary	
0	0	000
1	1	001
2	10	011
3	11	010
4	100	110
5	101	111
6	110	101
7	111	100
8	1000	
0	1001	

 Has a similar function principle as a stepper motor.

Figure 2-4. The outputs of the two orthogonal stator windings in a *resolver* are proportional to the sine and cosine of the applied rotor excitation (adapted from Tiwari, 1993).

Heading sensors

- Heading sensors can be proprioceptive (gyroscope, inclinometer) or exteroceptive (compass).
- Allow, together with appropriate velocity information, to integrate movement to a position estimate.
- Used to determine the robots orientation and inclination.
- This procedure is called dead reckoning (from ship navigation).

Dead reckoning

Webster dictionary definition:

The determination without the aid of celestial observations of the position of a ship or aircraft from the record of the courses sailed or flown, the distance made, and the known or estimated drift.

- The compass has been around since at least 2000 B.C.
- The Chinese suspended a piece of natural magnetite from a silk thread and used it to guide a chariot over land.
- Absolute measure for orientation based on Earth magnetic field.

Compass 2

- Several ways how to measure Earth magnetic field:
 - Mechanical magnetic compass.
 - Direct measure of the magnetic field (Hall-effect, magnetoresistive sensors).
- Major drawback
 - Weakness of the earth's magnetic field.
 - Easily disturbed by magnetic objects or other sources.
 - Not feasible for indoor environments.

Accelerometer

- By virtue of Newton's second law (F = ma) a sensor may be made to sense acceleration by simply measuring the force on a mass.
- Sensing force:
 - Magnetic.
 - Capacitive.
 - Piezoelectric.

Gyroscope

- Heading sensors, that keep the orientation to a fixed frame.
- Gyroscopes are used in aeroplanes, Segways.
- Two gyroscope principles:
 - Mechanical (flywheel).
 - Electrical.

Mechanical gyroscope

- A torque is applied to the frame of the gyro around the input axis,
- The output axis will rotate as shown in a motion called precession.
- This precession now becomes a measure of the applied torque and can be used as an output to, for example, correct the direction of an airplane or the position of a satellite antenna.

Mechanical gyroscope 2

49

- No torque can be transmitted from the outer pivot to the wheel axis.
- Spinning axis will therefore be space-stable.
- Quality: approx. 0.1° in 6 hours.

The gyroscope was invented by Jean Bernard Léon Foucault, a French physicist, in 1852. He originally began studying medicine but gave that up as he was afraid of blood!

Electronic gyroscope

- First commercial use started only in the early 1980s when they where first installed in aeroplanes.
- Heading sensors using two monochromic light (or laser) beams from the same source.
- One is traveling in a fiber clockwise, the other counterclockwise around a cylinder.

Electronic gyroscope 2

51

- Sagnac effect.
- Laser beam traveling in direction of rotation has a slightly shorter path -> shows a higher frequency.
- Difference in frequency ∆f of the two beams is proportional to the angular velocity.

Fig. 8.13. Sagnac effect.

Ground-Based Beacons

- Active, passive.
- Human use beaconbased navigation.
 - Natural beacons (landmarks) like stars, mountains or the sun
 - Artificial beacons like lighthouses.
- Used often indoors.
- Outdoors GPS.

Global Positioning System

- 1 satellite = distance.
- 2 satellites = intersection of two spheres.
- 3 satellites = circle.
- ≥ 4 satellites = unique solution.
- Precision up to a few meters.

Real-time differential GPS

54

- Correction with respect to a base station with known position.
- Improved location accuracy, from the 15 m nominal GPS accuracy to about 10 cm for the best implementations.

Differential GPS System

