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Outline of the talk:
¢ Random sample-based path finding. ¢ Rapidly exploring random trees (RRT).

¢ Probabilistic roadmap method (PRM). ¢

¢ PRM and narrow passages. 4
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¢ Feedback control solves many simpler navigation tasks, though not optimally in general. It

does not cope with more complicated situations as, e.g. the obstacle avoidance.

¢ Trajectory optimization provides the locally optimal solution for more complicated tasks.

¢ Path finding, a global search, is needed for most complicated tasks. Here, we are satisfied
with a valid solution. The reason is that the path finding algorithms have often exponential
computational complexity (both in time and memory). Finding the optimal path would be

even more complex.
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Lecture plan

Pravious lecture: Methods based on C-space discretization, graph traversal and
some of them improved by heuristics.

¢ Path finding as a graph search.
¢ Bug algorithm.

¢ Adding potentials to guide the feedback control while avoiding obstacles.

Today: Random sample-based path finding.
¢ Probabilistic roadmaps (PRMs).

¢ Rapidly exploring random trees (RRTs).
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Sample-based algorithm, core ideas

¢ Core ideas are shared with more general Monte Carlo algorithms. They are
randomized, heuristic algorithms whose output may be incorrect with a
certain (typically small) probability.

¢ Key idea: Rather than exhaustively explore all possibilities, explore a smaller
subset of possibilities randomly while keeping track of the progress.

¢ Facilities “probing” deeper in a search graph much earlier than any
exhaustive algorithm can.

® The caveat: We must sacrifice typically both completeness and optimality
Classic tradeoff between solution quality and runtime performance.

We will remind Dijkstra algorithm finding the shortest path in the graph first.

Next, we will explain the probabilistic road map method.
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Sample-based path finding algorithms; pros, cons

Pros

¢ Probabilistically complete.

® Do not construct the C-space.

¢ Apply easily to high-dimensional C-spaces.

¢ Support fast queries if enough preprocessing was done.

® Many success stories solving previously unsolved tasks.

Cons

® Requires solving 2-point boundary value problem.

® Do not work well for some tasks.
e Unlikely to place sample nodes in narrow passages.
e |t is hard to sample/connect nodes on constraint surfaces.

¢ Neither optimality nor completeness.
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Single-query motion planning (batch) methods compute only a single path
between a start configuration and a goal configuration.

They gain efficiency by developing an understanding of the configuration
space connectivity that pertains to this particular query.

Example: Probabilistic Roadmap [L. E. Kavraki 1996].

Multiple-query motion planning (incremental) methods approximate the
connectivity of the entire configuration space. While this is computationally
more expensive, the resulting roadmap can be used to quickly compute a
path between any two configurations.

Multi-query methods are well suited to static environments where the
expensive precomputation is worthwhile.

Example: Rapidly-exploring random tree [S. M. LaValle 1998].
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Dijkstra algorithm @ s
for the shortest path in general graphs 7/22

©® s — source node

® d(j) — the minimal distance from node s to
node

¢ pred(j) — predecessor of the node j

Dijkstra algorithm (1956) finds the shortest
node from the source node s to all nodes.

% N — set of all graph nodes
V := s % visited nodes;
U := N\ s % unvisited nodes;

d(s) :=0,1:=s;

while [V/</N/ do
choose(t,7) : ® Incrementally labels nodes with their

d(j) := ming m{d(k) + crm | distance-from-start.
keV,meU}, .

U=U\{j): ¢ Produces optimal (shortest) paths.
V=V+{ih @ Performance O(|N|?) with the heap
pred(j) = 1; reshuffling O(|N|log |N|).

end
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Probabilistic roadmap (PRM) planner

® The probabilistic roadmap planner is a motion planning algorithm
determining a path between a starting configuration of the robot and a goal
configuration while avoiding collisions.

® The basic idea behind PRM is to take random samples from the
configuration space of the robot, testing them for whether they are in the
free space, and use a local planner to attempt to connect these
configurations to other nearby configurations.

® The probabilistic roadmap planner consists of two phases: a construction
and a query phase.

e In the construction phase, a roadmap (graph) is built. A random
configuration is created. |t is connected to neighbors, e.g. k-nearest
ones.

e |n the query phase, the start and goal configurations are connected to
the graph, and the path is obtained by a Dijkstra’s shortest path query.
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Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; Overmars, M. H. (1996),
Probabilistic roadmaps for path planning in high-dimensional configuration
spaces, IEEE Transactions on Robotics and Automation, 12 (4): 566-580,
doi:10.1109/70.508439.

Geraerts, R.; Overmars, M. H. (2002), A comparative study of probabilistic
roadmap planners, Proceedings of the Workshop on the Algorithmic
Foundations of Robotics, pp. 43-57.
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Probabilistic roadmap, concepts and notation
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Notation
® ¢ € R is a configuration in C-space.

® Qfree Is set of free configurations, i.e. without collisions.

Required modules
¢ Method for Sampling points in C-space.

¢ Method for validating points in C-space, e.g. those points belonging to
obstacles.
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Probabilistic roadmap, graph generation

¢ Probabilistic road map generates a graph G = (V, /) of configurations such
that configurations along edges are € Qfree.
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Probabilistic roadmap, path finding

Given the graph, use (e.g.) Dijkstra algorithm to find the path from gg¢art to

(goal-
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Probabilistic roadmap, the algorithm
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Input: number » of samples, number & number of nearest neighbors
OQuiput: PEM & = (V. E)
1- intialize V=90, E =0
z- while |V| < n do A find n collision free points g,
3 q +— random sampile from @

4 g & Qyes then V «— ViU {g}

s end while

e forall ; = V do A chedk if near points can be connected
7 Ng + knearest neighbors of gin V'

s forall 4’ = N; do

a i pathiq, ') € Qe then E «— E U {{g.49")}

10: end for
11- end for

where path(g, q") is a local planner (easiest: straight line)
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Probabilistic roadmap, problem: narrow passages

The smaller the gap (clearance §) the more unlikely to sample such points.

(Jstart
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Probabilistic roadmap; pros and cons
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Pros
® Very simple algorithmically.
¢ Highly explorative.
¢ Allows probabilistic performance guarantees.

¢ Good to answer many queries in an unchanged environment

Cons

¢ Precomputation of an exhaustive roadmap takes a long time (but not
necessary for “Lazy PRMs").

¢ Hard to sample/connect nodes on constraint surfaces.
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Probabilistic roadmap; a little theory

for uniform sampling in d-dimensional space.

¢ Let 1,92 € Qfpee and v be a path in Q... connecting g; and go.

® § is the clearance of the path =, i.e. the distance to obstacles.

® o= legi‘ i where B is a hyperball of radius 0 centered at ¢;.

¢ The probability that the probabilistic roadmap (PRM) method finds the path
after n samples is

2
P(PRM-success|n) > 1 — %‘ p—00%n

® The result is probabilistic complete because one can achieve certainty with
high enough n.

® For a given success probability, n needs to be exponential in d.
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Probabilistic roadmap, challenges
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1. Connecting neighboring points:

It is easy for holonomic systems (i.e., for which you can move each degree of
freedom at will at any time) only. It requires solving a Boundary Value
Problem in general.

2. Collision checking:

It often takes majority of time in applications.

3. Sampling:
How to sample uniformly (or biased according to prior information) over
configuration space?
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Narrow passages; improved sampling strategies
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Uniform sampling  Gaussian sampling  Bridge sampling

¢ Gaussian sampling:

Generate ¢1 randomly; g2 ~ (N, 0); if ¢1 € Qfree and g2 & Qfree then add
q1 (or vice versa).

¢ Bridge sampling:
Generate ¢; randomly; g2 ~ (N, 0); q3 = @; if q1,q2 ¢ Qfree and

q3 € eree then add qs3.

Figure courtesy: O. Brock
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A rapidly exploring random tree (RRT) is an algorithm designed to
efficiently search nonconvex, high-dimensional spaces by randomly building a
space-filling tree.

The tree is constructed incrementally from samples drawn randomly from
the search space and is inherently biased to grow towards large unsearched
areas of the problem.

Original publication: LaValle, Steven M. (October 1998). Rapidly-exploring
random trees: A new tool for path planning. Technical Report. Computer
Science Department, lowa State University (TR 98-11).

RRTs can be viewed as a Monte Carlo technique to generate open-loop
trajectories for nonlinear systems with state constraints.

A single-query algorithm. = The trajectory is not optimal usually.

Courtesy: Wikipedia, Rapidly-exploring random tree


http://cmp.felk.cvut.cz

CAm ¢

20/22

RRT grows a tree rooted at the starting configuration by using random

samples from the search space.

As each sample is drawn, a connection is attempted between it and the
nearest state in the tree. If the connection is feasible (passes entirely through
free space and obeys any constraints), this results in the addition of the new

state to the tree.

With uniform sampling of the search space, the probability of expanding an
existing state is proportional to the size of its Voronoi region. As the largest
Voronoi regions belong to the states on the frontier of the search, this
means that the tree preferentially expands towards large unsearched areas.

Courtesy: Wikipedia, Rapidly-exploring random tree
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Simplest RRT with a straight line local planner and the step size a.

Input : ¢siart, NuMber of nodes n, stepsize o
Output: Tree T'= (V, F)

Initialize V' = Jstart, E = @ ,
for: =0 ton do
Jtaget < random sample from @) ;

Qnear <— Nearest neighbor of giaget in V' ;

o .
Qnew < Qnear T [qnoar—Qtaget) (QHear — Qtaget) :

if Qnew € eree then
V< VU {Qnew} ,

E <+ EU {(Qneara Qnew)}
end

end

Courtesy: Marc Toussaint
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RRT algorithm; growing directly towards the goal
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Input  : gstart, ¢goal, NUMber of nodes n, stepsize o,
Output: Tree T'= (V, F)

Initialize V' = qgtart, £ = 0. ;

for i =0 to n do

if rand(0,1) < B then gaget < Qgoal;
else gaget <— random sample from Q);
Jtaget < random sample from @) ;

Qnear < Nearest neighbor of giaget in V' ;

o :
Onew < Qnear T+ [ —— (Qnear — Qtaget) ,

if new € eree then
V«VU {QHew} ,

E+— FEU {(Qneara QHeW)}
end

end
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n = 100
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n = 200
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n = 300
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n = 400
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n = 500
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Grow two RRTs towards each other

[ Kuffner, LaValle ICRA “00]

qgoal

qnear
Uinit

RI 16-735, Howie Choset with slides from James Kuffner



A single RRT-Connect iteration...

QQoaI

RI 16-735, Howie Choset with slides from James Kuffner



1) One tree grown using random target

QQoaI

RI 16-735, Howie Choset with slides from James Kuffner



2) New node becomes target for other tree

qtarget
QQoaI

RI 16-735, Howie Choset with slides from James Kuffner



3) Calculate node “nearest” to target

RI 16-735, Howie Choset with slides from James Kuffner



4) Try to add new collision-free branch

RI 16-735, Howie Choset with slides from James Kuffner



5) If successful, keep extending branch

Qnew

RI 16-735, Howie Choset with slides from James Kuffner



5) If successful, keep extending branch

RI 16-735, Howie Choset with slides from James Kuffner



5) If successful, keep extending branch

qnew

RI 16-735, Howie Choset with slides from James Kuffner



6) Path found If branch reaches target

RI 16-735, Howie Choset with slides from James Kuffner



/) Return path connecting start and goal

RI 16-735, Howie Choset with slides from James Kuffner



Bi-directional search

e grow two trees starting from gstart and ggoal

let one tree grow towards the other
(e.g., “choose gnew Of T1 @S Grarget Of 15”)
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RRTs and
Bias toward large Voronoi regions

http://msl.cs.uiuc.edu/rrt/gallery.html

RI 16-735, Howie Choset with slides from James Kuffner



Summary: RRTs

e Pros (shared with PRMs):
— Algorithmically very simple
— Highly explorative
— Allows probabilistic performance guarantees

e Pros (beyond PRMs):
— Focus computation on single query (gstart; ggoal) Problem
— Trees from multiple queries can be merged to a roadmap
— Can be extended to differential constraints (nonholonomic systems)

e To keep in mind (shared with PRMs):
— The metric (for nearest neighbor selection) is sometimes critical
— The local planner may be non-trivial
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