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Lecture outline

 Problem formulation – localization, mapping, 

simultaneous localization and mapping.

 Localization methods taxonomy.

 Representation used in mobile robot environment 

modeling: occupancy grid, elevation maps, full 3D 

map.

 Occupancy grid update using Bayesian 

probabilistic reasoning.

 Occupancy grid update by hit/misses counting.

 Lines and planes as the world models.
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Major issues with autonomy

 Movement

inaccuracy

 Enviromental

uncertainty

 Sensor

inaccuracy

http://www.informatik.uni-bonn.de/~rhino/tourguide/
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Problem one - localization

Given:

 World map.

 Robot’s initial pose.

 Sensor updates.

Find:

 Robot’s pose as it moves.
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How do we solve localization?

 Represent beliefs as a 

probability density.

 Markovian assumption - pose 

distribution at time t.

conditioned on:

• Pose distribution at time t-1.

• Movement at time t-1.

• Sensor readings at time t.

 Discretize the density by 

sampling.
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Localization loop

At every time step t:

 Update each sample’s new location based on 

movement.

 Resample the pose distribution based on sensor 

readings.
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Localization, where am I?
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• Odometry, dead reckoning.

• Localization base on external sensors, 

beacons or landmarks.

• Probabilistic map based localization.
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Localization methods

 Mathematic Background, Bayes Filter

 Markov Localization:

• Central idea: robot position as the probability distribution, Bayes’ rule 

and convolution to update the belief.

• Markov Assumption: past and future data are independent if one 

knows the current state.

 Kalman Filtering

• Central idea: posing localization problem as a sensor fusion problem

• Assumption: gaussian distribution function

 Particle Filtering

• Central idea: Sample-based, nonparametric Filter

• Monte-Carlo method

 SLAM (simultaneous localization and mapping)

 Multi-robot localization.
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Globalization sidekick

Localization without knowledge of the start location.

Credit to Dieter Fox for this demo.
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Problem two - mapping

Given:

 Robot.

 Sensor readings.

Find:

 Map of the environment,

 and implicitly, the robot’s location as it moves in 

the environment.



11

SLAM – Simultaneous 

localization and mapping

If we have a map:

We can localize!

If we can localize:

We can make a map!
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Odometry versus SLAM

 Odometry
• Incremental growth 

of the position 
uncertainty.

• Optimization 
methods used.

 Visual SLAM
• Carthographic

memory.

• Closing the loop 
decrease of 
uncertainty.
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This lecture – world modeling

The aim of the world modeling:

 The aim is to construct/update the model of the 

world (environment) of a mobile robot.

 The world model of the robot allows the robot to 

adapt its decisions to the current state of the world.

 The world model is constructed/updated from 

sensor data as the robot explores its environment.

 Throughout this lecture we will describe how to 

calculate a map given we know the pose of the 

vehicle. This is not the SLAM problem.
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Challenges in world modeling

1. Compact models are 

needed to be used 

efficiently by other 

components (as path 

planners).

2. The model must be 

adapted to the task 

and environment. 

E.g., model based as 

set of planes is not 

suited for natural 

terrains.

 Universal world 

representation does 

not exist  choice 

from several 

approaches.

3. Uncertainty: the 

model must 

accommodate to 

uncertainty in both 

sensor data and to 

robot’s state 

estimation.
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A historical perspective

2D occupancy grid 

 Indoor environment

 Uncertainty expressed as 

a probability of occupancy 

of a cell in a grid.

 Highly structured 

environment  lines, 

planes.

Elevation maps

 Came with longer range 

sensing (laser, stereo 

vision)

 2½D grid, each grid 

contains elevation 

(possibly other features).

Full 3D maps

 Needed to represent 

vertical or overhanging 

structures, e.g., in the 

urban environment.

 3D grid.

 Point clouds, meshes.
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The general problem of mapping

Formally, mapping involves, given the sensor data zi

(observations), i=1,…,n

The goal is to calculate the most likely map
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Types of localization tasks

 Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

 Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…
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Problems in mapping

 Sensor interpretation

• How do we extract relevant information from 
raw sensor data?

• How do we represent and integrate this 
information over time?

 Robot locations have to be estimated

• How can we identify that we are at a previously 
visited place?

• This problem is the so-called data association 
problem.
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Occupancy grid maps

 Introduced by Moravec and Elfes in 1985.

 Represent environment by a grid.

 Estimate the probability mt
[x,y] that a location x,y is 

occupied by an obstacle in the time instant t.

 Key assumptions
• Occupancy of individual cells (m[xy]) is independent

• Robot positions are known!
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Updating occupancy grid maps
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 Idea: Update each individual cell using a binary 

Bayes filter.

 Additional assumption: Map is static.
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Updating occupancy grid maps

 Update the map cells using the inverse sensor 

model

 Or use the log-odds representation
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Typical sonar model 

for occupancy grid maps

Combination of a linear function and a Gaussian:

For z = 2.0 m. For z = 2.5 m.
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Key parameters of the model
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Occupancy value depending on 

the measured distance
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Deviation from the prior belief
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Calculating the occupancy 

probability based on a single 

observation
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Incremental updating 

of occupancy grids, example 
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Resulting map obtained with 

ultrasound sensors
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Resulting occupancy and 

maximum likelihood map

The maximum likelihood map is obtained by clipping the 

occupancy grid map at a threshold of 0.5.
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Occupancy grids from scans to 

maps
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Tech museum, San Jose

CAD map occupancy grid map
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Alternative: Simple counting

 For every cell count

• hits(x,y): number of cases where a beam ended 
at (x,y).

• misses(x,y): number of cases where a beam 
passed through (x,y).

 Value of interest: P(reflects(x,y))

),misses(),hits(

),hits(
)( ][

yxyx

yx
mBel xy






33

The measurement model
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Computing the most likely map

 Compute values for m that maximize

 Assuming a uniform prior probability for P(m), this is 

equivalent to maximizing (application of Bayes rule)
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Computing the most likely map
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Meaning of j and j


 


T

t

N

n

ntnttj jznxfI
1 1

,, )1()),,(( 

 
 















T

t

N

n

z

k

tj

nt

jknxfI
1 1

1

0

,

)),,((

corresponds to the number of times a beam that is 

not a maximum range beam ended in cell j (hits(j))

corresponds to the umber of times a beam 

intercepted cell j without ending in it (misses(j)).
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Computing the most likely map
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Difference between occupancy

grid maps and counting

 The counting model determines how often a cell 

reflects a beam.

 The occupancy model represents whether or not 

a cell is occupied by an object.

 Although a cell might be occupied by an object, 

the reflection probability of this object might be 

very small.
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Example of the occupancy map
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Example the reflection map

glass panes
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Example

 Out of 1000 beams only 60% are reflected from a cell and 

40% intercept it without ending in it.

 Accordingly, the reflection probability will be 0.6.

 Suppose p(occ | z) = 0.55 when a beam ends in a cell and 

p(occ | z) = 0.45 when a cell is intercepted by a beam that 

does not end in it.

 Accordingly, after n measurements we will have 

 Whereas the reflection map yields a value of 0.6, the 

occupancy grid value converges to 1.
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Summary, occupancy grid

 Occupancy grid maps are a popular approach to represent the 

environment of a mobile robot given known poses.

 In this approach, each cell is considered independently from all 

others.

 The cell the posterior probability that the corresponding area in the 

environment is occupied.

 Occupancy grid maps can be learned efficiently using a probabilistic 

approach.

 Reflection maps are an alternative representation.

 The reflection map stores in each cell the probability that a beam is 

reflected by this cell. 

 We provided a sensor model for computing the likelihood of 

measurements and showed that the counting procedure underlying 

reflection maps yield the optimal map. 
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Line maps

 Suitable for man-made structures as common 

indoor scenes.

 Parametric representation (unlike non-parametric 

occupancy grid).

 Advantages:

• Substantially less memory than grids.

• Higher accuracy because they do not suffer from 

discretization problem.

 Disadvantages:

• No closed-form solution for situation when data points 

correspond to multiple linear structures.

• How many lines there are?  Data association problem.
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Line fitting, least squares

 Data points xi , yi .

 The closed-form line approximation
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Line map, an example

94 lines, example from Handbook of Robotics, Springer 2008 


