

Grasping and manipulation in robotics

Václav Hlaváč

Czech Technical University in Prague (CTU)

Czech Institute of Informatics, Robotics, and Cybernetics (CIIRC)

166 36 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic

vaclav.hlavac@cvut.cz http://people.ciirc.cvut.cz/hlavac/

Manipulation, grasping

Manipulation

 Manipulation means interacting with the object physically, exerting forces on it in order to move or reshape it.

Grasping

 Merriam-Webster dictionary: "used, designed, or adapted to grasp"

Textbooks

- R.R. Murray, Li, Z., Sastry, S. S., A mathematical introduction to robotic manipulation. CRC press. Chicago, 1994.
 - http://www.cds.caltech.edu/~murray/ books/MLS/pdf/mls94-complete.pdf
- M.T. Mason, Mechanics of Robotic Manipulation, MIT Press, 2001.
 - http://cognet.mit.edu/book/mechanic s-of-robotic-manipulation

Robotic grasping, a complex field

- Hand design: high level (number of fingers, kinematic structure, etc.) and low-level (mechanism design, motors, materials, etc.);
- Hand control algorithms: high level (find an appropriate posture for a given task) and low-level (execute the desired posture);
- Information from sensors (tactile, vision, range sensing, etc.);
- Any pre-existing knowledge of objects shape, semantics and tasks (e.g. a cup is likely to be found on a table, should not be held upside-down, etc.);
- All of these add up to a Grasp Planning System ... and more!

Courtesy: Peter Allen, Columbia University

Mechanics of manipulation

- Contact models
- Friction
 - Coulomb's law
 - Friction cones
 - Planar single contact problems
- Grasping
 - Force- and form closure
 - Grasp synthesis and map
 - Grasp stability and quality
 - Grasp planning
- Static and quasi-static models of interaction between the manipulator and the environment.

Animals and manipulation

A dung beetle rolling a ball

Weaverbird (snovač in Czech)

A chimpanzee fishing termites

Human hand, prehensile and nonprehensile movements

Prehensile movements

Five basic prehensile

Palmar Grip

Cylindrical Grip

Spherical Grip

Lateral Grip

Oppositional Grip

Nonprehensile movements

 Do not require finger dexterity or use of opposable thumb

Hook

Spread

Robotic wrist joint

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

- Has typically 3 degrees of freedom
 - Roll involves rotating the wrist about the arm axis
 - Pitch up-down rotation of the wrist
 - Yaw left-right rotation of the wrist
- The end effector is mounted on the wrist

Types of end effectors

- The end effector is a device attached to the robot arm flange (wrist) enabling a general-purpose robot to perform the specific task
- Three types of end effectors
 - 1. Grippers (prehensile, chápavý zool.) grasp and manipulate objects, e. g., parts in industrial manufacturing during the work cycle
 - Structured environment
 - Reliable
 - Simple, low cost

Suction

Magnet

Parallel jaw

- 2. Hands (prehensible)
 - Unstructured environment
 - Adaptable
 - Complex, expensive
- 3. Tools (nonprehensile) perform a process, e. g. spray painting, welding, screw something together

Desired: position/orientation vs. dynamics

Move the end effector to a desired position/orientation

Typical operations

- Pick and place
- Assembly
- Stacking and loading

Move the end effector with a desired dynamics (having a force/torque feedback is needed in some cases)

Typical operations

- Cutting, machining, grinding, ...
- Painting
- Scanning areas

Mechanical grippers

Robot hands

Grippers classification

Gripper End Effectors			
Gripper Type	Gripper Configuration	Gripper Movement	Internal/External Gripping
Mechanical finger	Two-finger Three-finger Four-finger	Parallel or angular	Internal and external
Collet	Round Square Hexagonal	360° clamping contact	Internal and external
Vacuum	One or more suction cups	Vacuum/suction	External
Electromechanical	Permanent magnet Electromagnet	Magnetic attraction	External

Goodheart-Willcox Publisher

Gripper mechanisms

Václav Hlaváč, CIIRC CTU in Prague

14

Vacuum grippers aka suction cups

Vacuum grippers applications

Negative pressure, Bernoulli, non-contact

Special purpose gripper

Kinetic and static friction (aka stiction)

- $F_f \leq \mu_S \cdot F_n$ (at rest), μ_S is the coefficient of static friction
- $F_{f \le \mu_k} \cdot F_n$ (moving), μ_k is the coefficient of kinetic friction

Eriction cones

- Friction at a contact point allows forces in directions other than the contact normal
- COF, μ, is determined by the contacting materials
- Estimate friction cone as convex sum of a force vectors on the boundary assuming a unit normal force, $\|\mathbf{f}\| = 1$, $\mathbf{f} = \sum_{j=1}^m \alpha_j \mathbf{f}_j$

Tools: welding

Peripherals: Part feeding

Many methods for presenting product to robot:

- Loose (bulk)
- Accumulated (conveyor)
- Random (conveyor)
- Trays
- Magazines
- Taped Reels
- Carrier Strip

Fixturing

Vibrating bowl feeding