
From Bayes to Extended Kalman Filter
Michal Reinštein

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Center for Machine Perception
http://cmp.felk.cvut.cz/˜reinsmic,

reinstein.michal@fel.cvut.cz

Acknowledgement: V. Hlavac — Introduction to probability theory and P. Newman — SLAM
Summer School 2006, Oxford

Outline of the lecture:
� Overview: From MAP to RBE
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� Linear Kalman Filter (LKF)
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What is Estimation?

„Estimation is the process by which we infer the value of a quantity of interest,
x, by processing data that is in some way dependent on x.“

� Measured data corrupted by noise—uncertainty in input transformed into
uncertainty in inference (e.g. Bayes rule)

� Quantity of interest not measured directly (e.g. odometry in skid-steer
robots)

� Incorporating prior (expected) information (e.g. best guess or past
experience)

� Open-loop prediction (e.g. knowing current heading and speed, infer future
position)

� Uncertainty due to simplifications of analytical models (e.g. performance
reasons—linearization)

http://cmp.felk.cvut.cz
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Bayes Theorem

P(B|A) =
P(A|B) P (B)

P (A)
,

where P(B|A) is the posterior probability and P(A|B) is the likelihood.

� This is a fundamental rule for machine learning (pattern recognition) as it
allows to compute the probability of an output B given measurements A.

� The prior probability is P (B) without any evidence from measurements.

� The likelihood P(A|B) evaluates the measurements given an output B.
Seeking the output that maximizes the likelihood (the most likely output) is
known as the maximum likelihood estimation (ML).

� The posterior probability P(B|A) is the probability of B after taking the
measurement A into account. Its maximization leads to the maximum
a-posteriori estimation (MAP).

http://cmp.felk.cvut.cz
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Overview of the Probability Rules

� The Product rule: P (A,B) = P (A|B)P (B) = P (B|A)P (A)

� The Sum rule: P (B) =
∑
A

P (A,B) =
∑
A

P (B|A)P (A)

� Random events A,B are independent ⇔ P (A,B) = P (A) P (B),
� and the independence means: P (A|B) = P (A), P (B|A) = P (B)

� A,B are conditionally independent ⇔ P (A,B|C) = P (A|C)P (B|C)

� The Bayes theorem:

P (A|B) = P (A,B)
P (B) = P (B|A)P (A)

P (B) = P (B|A)P (A)∑
A
P (B|A)P (A)

� General inference:

P (V |S) =
P (V, S)

P (S)
=

∑
A,B,C

P (S,A,B,C, V )∑
S,A,B,C

P (S,A,B,C, V )

http://cmp.felk.cvut.cz
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Mean & Covariance

Expectation = the average of a variable under the probability distribution.
Continuous definition: E(x) =

∞∫
−∞

x f(x) dx vs. discrete: E(x) =
∑
x
x P (x)

Mutual covariance σxy of two random variables X,Y is

σxy = E ((X − µx)(Y − µy))

Covariance matrix1 Σ of n variables X1, . . . , Xn is

Σ =

 σ2
1 . . . σ2

1n
. . .

σ2
n1

. . . σ2
n



1Note: The covariance matrix is symmetric (i.e. Σ = Σ>) and positive-semidefinite (as the covariance
matrix is real valued, the positive-semidefinite means that x>Mx ≥ 0 for all x ∈ R).

http://cmp.felk.cvut.cz
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Multivariate Normal distribution (1)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15

http://cmp.felk.cvut.cz
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Multivariate Normal distribution (2)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution (3)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution (4)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution (5)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution (6)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15

http://cmp.felk.cvut.cz
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MAP - Maximum A-Posteriori Estimation

� In many cases, we already have some prior (expected) knowledge about the
random variable x, i.e. the parameters of its probability distribution p(x).

� With the Bayes rule, we go from prior to a-posterior knowledge about x,
when given the observations z:

p(x|z) = p(z|x)p(x)
p(z) = likelihood×prior

normalizing constant ∼ C × p(z|x)p(x)

� Given an observation z, a likelihood function p(z|x) and prior distribution
p(x) on x, the maximum a posteriori estimator MAP finds the value of x
which maximizes the posterior distribution p(x|z):

x̂MAP = argmax
x

p(z|x)p(x)

http://cmp.felk.cvut.cz
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MMSE - Minimum Mean Squared Error

Without proof2: We want to find such a x̂, an estimate of x, that given a set
of measurements Zk = {z1, z2, ..., zk} it minimizes the mean squared error
between the true value and this estimate.3

x̂MMSE = argmin
x̂

E{(x̂− x)>(x̂− x)|Zk} = E{x|Zk}

Why is this important? The MMSE estimate given a set of measurements is
the mean of that variable conditioned on the measurements! 4

2See reference [1] pages 11-12
3Note: We minimize a scalar quantity.
4Note: In LSQ the x is a unknown constant but in MMSE x is a random variable.

http://cmp.felk.cvut.cz
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RBE - Recursive Bayesian Estimation

RBE is the natural extension of MAP to time-stamped sequence of observations
being processed at each time step. In RBE we use the priory estimate and current
measurement to compute the posteriori estimate x̂.

� When the next measurement comes we use our previous posteriori estimate
as a new prior and proceed with the same estimation rule.

� Hence for each time-step k we obtain an estimate for it’s state given all
observations up to that time (the set Zk).

� Using the Bayes rule and conditional independence of measurements
(zk being single measurement at time k):

p(x,Zk) = p(x|Zk)p(Zk) = p(Zk|x)p(x) = p(Zk−1|x)p(zk|x)p(x)

� We express p(Zk−1|x) and substitute for it to get:

p(x|Zk) =
p(zk|x)p(x|Zk−1)p(Zk−1)

p(Zk)

http://cmp.felk.cvut.cz
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RBE - Recursive Bayesian Estimation

RBE is extension of MAP to time-stamped sequence of observations.

Without proof5: We obtain RBE as the likelihood of current kth measurement
× prior which is our last best estimate of x at time k − 1 conditioned on
measurement at time k − 1 (denominator is just a normalizing constant).

p(x|Zk) = p(zk|x)p(x|Zk−1)

p(zk|Zk−1)
= current likelihood×last best estimate

normalizing constant

5See reference [1] pages 12-14, note: if Gaussian pdf of both prior and likelihood then the RBE→ the LKF

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation

Given measurements z, we wish to solve for x, assuming linear relationship:

Hx = z

If H is a square matrix with detH 6= 0 then the solution is trivial:

x = H−1z,

otherwise (most commonly), we seek such solution x̂ that is closest (in Euclidean
distance sense) to the ideal:

x̂ = argmin
x

||Hx− z||2 = argmin
x

{
(Hx− z)

>
(Hx− z)

}

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation

Given the following matrix identities:

� (AB)> = B>A>

� ||x||2 = x>x

� ∇x b>x = b

� ∇x x>Ax = 2Ax

We can derive the closed form solution6:

||Hx− z||2 = x>H>Hx− x>H>z− z>Hx + z>z

∂||Hx− z||2

∂x
= 2H>Hx− 2H>z = 0

⇒ x = (H>H)−1H>z

6in MATLAB use the pseudo-inverse pinv()

http://cmp.felk.cvut.cz
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LSQ - Weighted Least Squares Estimation

If we have information about reliability of the measurements in z, we can capture
this as a covariance matrix R (diagonal terms only since the measurements are
not correlated:

R =

σ2
z1 0 0

0 σ2
z2 . . .

... ... . . .


In the error vector e defined as e = Hx− z we can weight each its element by
uncertainty in each element of the measurement vector z, i.e. by R−1. The
optimization criteria then becomes:

x̂ = argmin
x

||R−1(Hx− z)||2

Following the same derivation procedure, we obtain the weighted least squares:

⇒ x = (H>R−1H)−1H>R−1z

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation

The world is non-linear → nonlinear model function h(x) → non-linear LSQ7:

x̂ = argmin
x

||h(x)− z||2

� We seek such δ that for x1 = x0 + δ the ||h(x1)− z||2 is minimized.
� We use Taylor series expansion: h(x0 + δ) = h(x0) +∇Hx0δ

||h(x1)−z||2 = ||h(x0)+∇Hx0δ−z||2 = || ∇Hx0︸ ︷︷ ︸
A

δ− (z− h(x0)︸ ︷︷ ︸
b

)||2

where ∇Hx0 is Jacobian of h(x):

∇Hx0 =
∂h

∂x
=


∂h1
∂x1

. . . ∂h1
∂xm... ...

∂hn
∂x1

. . . ∂hn
∂xm


7Note: We still measure the Euclidean distance between two points that we want to optimize over.

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation

The extension of LSQ to the non-linear LSQ can be formulated as an algorithm:

1. Start with an initial guess x̂. 8

2. Evaluate the LSQ expression for δ (update the ∇Hx̂ and substitute). 9

δ := (∇Hx̂
>∇Hx̂)−1∇Hx̂

>[z− h(x̂)]

3. Apply the δ correction to our initial estimate: x̂ := x̂ + δ.10

4. Check for the stopping precision: if ||h(x̂)− z||2 > ε proceed with step (2)

or stop otherwise.11

8Note: We can usually set to zero.
9Note: This expression is obtained using the LSQ closed form and substitution from previous slide.
10Note: Due to these updates our initial guess should converge to such x̂ that minimizes the ||h(x̂)− z||2
11Note: ε is some small threshold, usually set according to the noise level in the sensors.

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation

Example - Long Base-line Navigation SONARDYNE

http://cmp.felk.cvut.cz
http://www.sonardyne.com/products/positioning/fusion-6g.html
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LSQ - Least Squares Estimation

Example - Long Base-line Navigation

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation

Example - Long Base-line Navigation

http://cmp.felk.cvut.cz
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Overview of Estimators

What have we learnt so far?

� MLE - we have the likelihood (conditional probability of measurements)

� MAP - we have the likelihood and some prior (expected) knowledge

� MMSE - we have a set of measurements of a random variable

� RBE - we have the MAP and incoming sequence of measurements

� LSQ - we have a set of measurements and some knowledge about the
underlying model (linear or non-linear)

What comes next?

The Kalman filter - we have sequence of measurements and a state-space model
providing the relationship between the states and the measurements (linear model
→ LKF, non-linear model → EKF)

http://cmp.felk.cvut.cz
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LKF - Assumptions

The likelihood p(z|x) and the prior p(x) on x are Gaussian, and the linear
measurement model z = Hx + w is corrupted by Gaussian noise w ∼ N (0,R):

p(w) =
1

(2π)n/2|R|1/2
exp{−1

2
w>R−1w}

The likelihood p(z|x) is now a multi-D Gaussian12:

p(z|x) =
1

(2π)nz/2|R|1/2
exp{−1

2
(z−Hx)>R−1(z−Hx)}

The prior belief in x with mean x	 and covariance P	 is a multi-D Gaussian:

p(x) =
1

(2π)nx/2|P	|1/2
exp{−1

2
(x− x	)>P−1

	 (x− x	)}

We want the a-posteriori estimate p(x|z) that is also a multi-D Gaussian, with
mean x⊕ and covariance P⊕ → the equations of the LKF.

12Note: nz is the dimension of the observation vector and nx is the dimension of the state vector.

http://cmp.felk.cvut.cz
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LKF - The proof?

Without proof13, here are the main ideas exploited while deriving the LKF:

� We use the Bayes rule to express the p(x|z) → the MAP14

� We know that Gaussian × Gaussian = Gaussian

� Considering the above, the new mean x⊕ will be the MMSE estimate,

� the new covariance P⊕ is derived using a crazy matrix identity

13See reference [1] pages 22-26
14Note: Recall the Bayes rule p(x|z) = p(z|x)p(x)

p(z) = p(z|x)p(x)
p(z) = p(z|x)p(x)∫+∞

−∞ p(z|x)p(x) dx
= p(z|x)p(x)

normalising const

http://cmp.felk.cvut.cz
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LKF - The proof?

For the proof see reference [1] pages 22-26

http://cmp.felk.cvut.cz
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LKF - Update Equations

We defined a linear observation model mapping the measurements z with
uncertainty (covariance) R onto the states x using a prior mean estimate x	
with prior covariance P	.

The LKF update: the new mean estimate x⊕ and its covariance P⊕:

x⊕ = x	 + Wν

P⊕ = P	 −WSW>

– where ν is the innovation given by: ν = z−Hx	,
– where S is the innovation covariance given by: S = HP	H

> + R,15
– where W is the Kalman gain (∼ the weights!) given by: W = P	H

>S−1.

What if we want to estimate states we don’t measure? → model

15Note: Recall that if x ∼ N (µ,Σ) and y = Mx then y ∼ N (µ,MΣM>)

http://cmp.felk.cvut.cz
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LKF - System Model Definition

Standard state-space description of a discrete-time system:

x(k) = Fx(k−1) + Bu(k) + Gv(k)

– where v is a zero mean Gaussian noise v ∼ N (0,Q) capturing the uncertainty
(imprecisions) of our transition model (mapped by G onto the states),
– where u is the control vector16 (mapped by B onto the states),
– where F is the state transition matrix17.

16For example the steering angle on a car as input by the driver.
17For example the differential equations of motion relating the position, velocity and acceleration.

http://cmp.felk.cvut.cz
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LKF - Temporal-Conditional Notation

The temporal-conditional18 notation, noted as (i|j), defines x̂(i|j) as the MMSE
estimate of x at time i given measurements up until and including the time j,
leading to two cases:

� x̂(k|k) estimate at k given all available measurements → the estimate

� x̂(k|k−1) estimate at k given the first k − 1 measurements → the prediction

18This notation is necessary to introduce when incorporating the state-space model into the LKF equations.

http://cmp.felk.cvut.cz
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LKF - Incorporating System Model

The LKF prediction: using (i|j) notation

x̂(k|k−1) = Fx̂(k−1|k−1) + Bu(k)

P(k|k−1) = FP(k−1|k−1)F
> + GQG>

The LKF update: using (i|j) notation

x̂(k|k) = x̂(k|k−1) + W(k)ν(k)

P(k|k) = P(k|k−1) −W(k)SW(k)
>

– where ν is the innovation: ν(k) = z(k) −Hx̂(k|k−1)

– where S is the innovation covariance: S = HP(k|k−1)H
> + R

– where W is the Kalman gain(∼ the weights!): W(k) = P(k|k−1)H
>S−1

http://cmp.felk.cvut.cz
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LKF - Discussion

� Recursion: the LKF is recursive, the output of one iteration is the input to
next iteration.

� Initialization: the P(0|0) and x̂(0|0) have to be provided. 19

� Predictor-corrector structure:
the prediction is corrected by fusion of measurements via innovation, which
is the difference between the actual observation z(k) and the predicted
observation Hx̂(k|k−1).

19Note: It can be some initial good guess or even zero for mean, one for covariance.

http://cmp.felk.cvut.cz
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LKF - Discussion

� Asynchrosity: The update step only proceeds when the measurements
come, not necessarily at every iteration. 20

� Prediction covariance increases: since the model is inaccurate the
uncertainty in predicted states increases with each prediction by adding the
GQG> term → the Pk|k−1 prediction covariance increases.

� Update covariance decreases: due to observations the uncertainty in
predicted states decreases / not increases by subtracting the positive
semi-definite WSW>21 → the Pk|k update covariance decreases / not
increases.

20Note: If at time-step k there is no observation then the best estimate is simply the prediction x̂(k|k−1)

usually implemented as setting the Kalman gain to 0 for that iteration.
21Each observation, even the not accurate one, contains some additional information that is added to the

state estimate at each update.

http://cmp.felk.cvut.cz
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LKF - Discussion

� Observability: the measurements z need not to fully determine the state
vector x, the LKF can perform22 updates using only partial measurements
thanks to:
– prior info about unobserved states and
– correlations.23

� Correlations:
– the diagonal elements of P are the principal uncertainties (variance) of
each of the state vector elements.
– the off-diagonal terms of P capture the correlations between different
elements of x.

Conclusion: The KF exploits the correlations to update states that are not
observed directly by the measurement model.

22Note: In contrary to LSQ that needs enough measurements to solve for the state values.
23Note: Over the time for unobservable states the covariance will grow without bound.

http://cmp.felk.cvut.cz
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LKF - Linear Navigation Problem

Example - Planet Lander: State-space model

A lander observes its altitude x above planet using time-of-flight radar. Onboard
controller needs estimates of height and velocity to actuate the rockets →
discrete time 1D model:

x(k) =

[
1 δT

0 1

]
︸ ︷︷ ︸

F

x(k−1) +

[
δ0.5T 2

δT

]
︸ ︷︷ ︸

G

v(k)

z(k) =
[

2
c 0

]︸ ︷︷ ︸
H

x(k) + w(k)

where δT is sampling time, the state vector x = [h ḣ]> is composed of height h
and velocity ḣ; the process noise v is a scalar gaussian process with covariance
Q24, the measurement noise w is given by the covariance matrix R.25

24Modelled as noise in acceleration—hence the quadratics time dependence when adding to position-state.
25Note: We can find R either statistically or use values from a datasheet.

http://cmp.felk.cvut.cz
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LKF - Linear Navigation Problem

Example - Planet Lander: Simulation model

A non-linear simulation model in MATLAB was created to generate the true
state values and corresponding noisy observation:

1. First, we simulate motion in a thin atmosphere (small drag) and vehicle
accelerates.

2. Second, as the density increases the vehicle decelerates to reach quasi-steady
terminal velocity fall.

� The true σ2
Q of the process noise and the σ2

R of the measurement noise are
set to different numbers than those used in our linear model.26

� Simple Euler integration for the true motion is used (velocity → height).

26Note: we can try to change these settings and observe what happens if the model and the real world are
too different.

http://cmp.felk.cvut.cz
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LKF - Linear Navigation Problem

Example - Planet Lander: Controller model

The vehicle controller has two features implemented:

1. When the vehicle descends below a first given altitude threshold, it deploys a
parachute (to increase the aerodynamic drag).

2. When the vehicle descends below a second given altitude threshold, it fires
rocket burners to slow the descend and land safely.

� The controller operates only on the estimated quantities.

� Firing the rockets also destroys the parachute.

http://cmp.felk.cvut.cz
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LKF - Linear Navigation Problem - MATLAB

Example - MATLAB

http://cmp.felk.cvut.cz
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LKF - Linear Navigation Problem - MATLAB

Example - MATLAB

http://cmp.felk.cvut.cz
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LKF - Linear Navigation Problem

Example - Results for: σmodel
R = 1.1σtrue

R , σmodel
Q = 1.1σtrue

Q

We did good modeling, errors are due to the non-linear world!

http://cmp.felk.cvut.cz
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LKF - Linear Navigation Problem

Example - Results for: σmodel
R = 10σtrue

R , σmodel
Q = 1.1σtrue

Q

We do not trust the measurements, the good linear model alone is not enough!

http://cmp.felk.cvut.cz


43/55
LKF - Linear Navigation Problem

Example - Results for: σmodel
R = 1.1σtrue

R , σmodel
Q = 10σtrue

Q

We do not trust our model, the estimates have good mean but are too noisy!

http://cmp.felk.cvut.cz
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LKF - Linear Navigation Problem

Example - Results for: σmodel
R = 0.1σtrue

R , σmodel
Q = 1.1σtrue

Q

We are overconfident measurements—fortunately, the sensor is not more noisy!

http://cmp.felk.cvut.cz
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LKF - Linear Navigation Problem

Example - Results for: σmodel
R = 1.1σtrue

R , σmodel
Q = 0.1σtrue

Q

We are overconfident in our model, but the world is really not linear ...

http://cmp.felk.cvut.cz
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LKF - Linear Navigation Problem

Example - Results for: σmodel
R = 10σtrue

R , σmodel
Q = 10σtrue

Q

We do neither trust the model nor measurements, we cope with the nonlinearities.

http://cmp.felk.cvut.cz
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From LKF to EKF

� Linear models in the non-linear environment → BAD.

� Non-linear models in the non-linear environment → BETTER.

� Assume the following the non-linear system model function f(x) and the
non-linear measurement function h(x), we can reformulate:

x(k) = f(x(k−1),u(k),k) + v(k)

z(k) = h(x(k),u(k),k) + w(k)

http://cmp.felk.cvut.cz


48/55
EKF - Non-linear Prediction

Without proof27: The main idea behind EKF is to linearize the non-linear
model around the „best“ current estimate28.

This is realized using a Taylor series expansion29.

Assume an estimate x̂(k−1|k−1) then

x(k) ≈ f(x̂(k−1|k−1),u(k),k) +∇Fx[x(k−1) − x̂(k−1|k−1)] + · · ·+ v(k)

where the term ∇Fx is a Jacobian of f(x) w.r.t. x evaluated at x̂(k−1|k−1):

∇Fx =
∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂xm... ...

∂fn
∂x1

. . . ∂fn
∂xm


27See reference [1] pages 39-41
28Note: the „best“ meaning the prediction at (k|k − 1) or the last estimate at (k − 1|k − 1)
29Note: recall the non-linear LSQ problem of LBL navigation

http://cmp.felk.cvut.cz
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EKF - Non-linear Observation

Without proof30: The same holds for the observation model, i.e. the predicted
observation z(k|k−1) is the projection of x̂(k|k−1) through the non-linear
measurement model31.

Hence, assume an estimate x̂(k|k−1) then

z(k) ≈ h(x̂(k|k−1),u(k),k) +∇Hx[x̂(k|k−1) − x(k)] + · · ·+ w(k)

where the term ∇Hx is a Jacobian of h(x) w.r.t. x evaluated at x̂(k|k−1):

∇Hx =
∂h

∂x
=


∂h1
∂x1

. . . ∂h1
∂xm... ...

∂hn
∂x1

. . . ∂hn
∂xm



30See reference [1] pages 41-43
31Note: for the LKF it was given by Hx̂(k|k−1)

http://cmp.felk.cvut.cz
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EKF - Algorithm (1)

Source: [1] P. Newman, EKF Based Navigation and SLAM, SLAM Summer School 2006

http://cmp.felk.cvut.cz
http://www.robots.ox.ac.uk/~SSS06/Website/index.htm
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EKF - Algorithm (2)

Source: [1] P. Newman, EKF Based Navigation and SLAM, SLAM Summer School 2006
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EKF - Features & Maps

Assumption: The world is represented by a set of discrete landmarks (features)
whose location / orientation and geometry can by described by a set of discrete
parameters → concatenated into a feature vector called Map:

M =


xf ,1

xf ,2

xf ,3
...

xf ,n


Examples of features in 2D world:

� absolute observation: given by the position coordinates of the landmarks in
the global reference frame: xf ,i = [xi yi]

> (e.g., measured by GPS)
� relative observation: given by the radius and bearing to landmark:
xf ,i = [ri θi]

> (e.g., measured by visual odometry, laser mapping, sonar)

http://cmp.felk.cvut.cz


53/55
EKF - Localization

Assumption: we are given a map M and a sequence of vehicle-relative32
observations Zk described by likelihood p(Zk|M,xv).

Task: to estimate the pdf for the vehicle pose p(xv|M,Zk).

p(xv|M,Zk) =
p(xv,M,Zk)

p(M,Zk)
=
p(Zk|M,xv)× p(M,xv)

p(Zk|M)× p(M)
=

=
p(Zk|M,xv)× p(xv|M)× p(M)∫ +∞

−∞ p(Zk|M,xv)p(xv|M) dxv × p(M)
= p(Zk|M,xv)×p(xv|M)

normalising constant

Solution: p(xv|M) is just another sensor → the pdf of locating the robot when
observing a given map.

32Note: Vehicle-relative observations are such kind of measurements that involve sensing the relationship
between the vehicle and its surroundings—the map, e.g. measuring the angle and distance to a feature.
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EKF - Mapping

Assumption: we are given a vehicle location xv, 33 and a sequence of
vehicle-relative observations Zk described by likelihood p(Zk|M,xv).

Task: to estimate the pdf of the map p(M|Zk,xv).

p(M|Zk,xv) =
p(xv,M,Zk)

p(Zk,xv)
=
p(Zk|M,xv)× p(M,xv)

p(Zk|xv)× p(xv)
=

=
p(Zk|M,xv)× p(M|xv)× p(xv)∫ +∞

−∞ p(Zk|M,xv)p(M|xv) dM × p(xv)
= p(Zk|M,xv)×p(M|xv)

normalising constant

Solution: p(M|xv) is just another sensor → the pdf of observing the map at
given robot location.

33Note: Ideally derived from absolute position measurements since position derived from relative measu-
rements (e.g. odometry, integration of inertial measurements) is always subjected to a drift—so called dead
reckoning
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EKF - Simultaneous Localization and Mapping

If we parametrize the random vectors xv and M with mean and variance then
the (E)KF will compute the MMSE estimate of the posterior.

What is the SLAM and how can we achieve it?

� With no prior information about the map (and about the vehicle—no GPS),

� the SLAM is a navigation problem of building consistent estimate of both

� the environment (represented by the map—the mapping)

� and vehicle trajectory (6 DOF position and orientation—the localization),

� using only proprioceptive sensors (e.g., inertial, odometry),

� and vehicle-centric sensors (e.g., radar, camera, laser, sonar etc.).

http://cmp.felk.cvut.cz
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