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Outline of the lecture:

¢ Overview: From MAP to RBE ¢ Example: Linear navigation problem

¢ Overview: From LSQ to NLSQ ¢ Extended Kalman Filter (EKF)
¢ Linear Kalman Filter (LKF) @ Introduction to EKF-SLAM
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What is Estimation?

,Estimation is the process by which we infer the value of a quantity of interest,

x, by processing data that is in some way dependent on x."

\ 4

\ 4

\ 4

Measured data corrupted by noise—uncertainty in input transformed into
uncertainty in inference (e.g. Bayes rule)

Quantity of interest not measured directly (e.g. odometry in skid-steer
robots)

Incorporating prior (expected) information (e.g. best guess or past
experience)

Open-loop prediction (e.g. knowing current heading and speed, infer future
position)
Uncertainty due to simplifications of analytical models (e.g. performance

reasons—linearization)
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P(A[B) P(B)

pl4)
where P(B|A) is the posterior probability and P(A|B) is the likelihood.

P(BJA) —

¢ This is a fundamental rule for machine learning (pattern recognition) as it
allows to compute the probability of an output B given measurements A.

¢ The prior probability is P(B) without any evidence from measurements.

¢ The likelihood P(A|B) evaluates the measurements given an output B.

Seeking the output that maximizes the likelihood (the most likely output) is
known as the maximum likelihood estimation (ML).

¢ The posterior probability P(B|A) is the probability of B after taking the

measurement A into account. lts maximization leads to the maximum
a-posteriori estimation (MAP).
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Overview of the Probability Rules

The Product rule: P(A,B) = P(A|B) P(B) = P(B

|[A) P(A)
The Sum rule: P(B) =) P(A,B) = ZP(B|A) P(A
A

)
)
Random events A, B are independent < P(A, B) = P(A) P(B),
and the independence means: P(A|B) = P(A), P(B|A) = P(B)

A, B are conditionally independent < P(A, B|C) = P(A|C)P(B|C)
The Bayes theorem:

P(A,B) _ P(BJA)P(A) _ _P(BJA)P(A
P(AIB) = 5y = By = S P(BIA) B
A

General inference:

> P(S, A, B,C,V)
B

@
P — — :
V%) =55 P8, A, B.C.V)
S,A,B,C

~
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Expectation = the average of a variable under the probability distribution.
@)
Continuous definition: E(z) = [ x f(x) dx vs. discrete: E(x) =Y. x P(x)
00 x
Mutual covariance o,,, of two random variables X, Y is
Ony = L (X — pa)(Y — p1y))
Covariance matrix* ¥ of n variables X1, ..., X, is
-, , -
oy ... O,
> =
2 2
K . On |
'Note: The covariance matrix is symmetric (i.e. ¥ = ') and positive-semidefinite (as the covariance

matrix is real valued, the positive-semidefinite means that ' Mz > 0 for all z € R).
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Multivariate Gaussian (Normal) distribution

Parameters 4, 2
1

(2m)2

T1 T I Ty T X9 T1 T To

Parameter fitting:
Given training set {z!), 2(®) . . z(m)
i

1, e, g 1 , |
= (4) 3 el (4) _ &) _ \T
h=— ;:1 x d (2 — p)(=® - p)

m
i=1

p(z; p, X) = - exp (_%(;E — 1) T (- .U))

|2

Andrew Mg

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Gaussian (Normal) examples

0 10 0 0.6 0 0 2 0
e I I el (O B el

Andrew Mg

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Gaussian (Normal) examples

0 10
#=lof==1o 1

Andrew Mg

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Gaussian (Normal) examples

0 1 0 0 105 [0l _[1 08
= H = [ﬂ 1] o= H = [0,5 1 ] 5 H = {{],8 1 ]

Andrew Mg

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Gaussian (Normal) examples
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I = E = —_— — a i — '
‘i H [‘J 1] : [{)] . [—U.a 1 ] / M > [—[J.S 1 ]

Andrew Mg

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Gaussian (Normal) examples

|0 |10 0 1 0 | LD |11 0
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Andrew Mg

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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MAP - Maximum A-Posteriori Estimation

¢ In many cases, we already have some prior (expected) knowledge about the
random variable x, i.e. the parameters of its probability distribution p(x).

¢ With the Bayes rule, we go from prior to a-posterior knowledge about x,
when given the observations z:

p(X|Z) _ p(z|x)])9(x) __ _ likelihoodxprior C % p(Z|X)p(X)

p(z normalizing constant

¢ Given an observation z, a likelihood function p(z|x) and prior distribution
p(x) on x, the maximum a posteriori estimator MAP finds the value of x

which maximizes the posterior distribution p(x|z):

XMmap = argmax p(z|x)p(x)
xr
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Without proof?: We want to find such a X, an estimate of x, that given a set
of measurements Z" = {z,,z,, ...,z } it minimizes the mean squared error
between the true value and this estimate.?

XMMSE = argmin E{(X — x) (% — x)|Z*} = E{x|Z¥}

X

Why is this important? The MMSE estimate given a set of measurements is
the mean of that variable conditioned on the measurements! *

?See reference [1] pages 11-12
>Note: We minimize a scalar quantity.
*Note: In LSQ the x is a unknown constant but in MMSE x is a random variable.
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RBE is the natural extension of MAP to time-stamped sequence of observations
being processed at each time step. In RBE we use the priory estimate and current
measurement to compute the posteriori estimate Xx.

® When the next measurement comes we use our previous posteriori estimate
as a new prior and proceed with the same estimation rule.

® Hence for each time-step k we obtain an estimate for it's state given all
observations up to that time (the set ZX).

® Using the Bayes rule and conditional independence of measurements
(z; being single measurement at time £):

p(x, Z%) = p(x|Z*)p(Z") = p(Z*|x)p(x) = p(Z"'|x)p(zx|x)p(x)
¢ We express p(Z"~!|x) and substitute for it to get:

p(zi|x)p(x|Z*")p(ZF 1)

p(x|Z¥) = (25
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RBE is extension of MAP to time-stamped sequence of observations.

Without proof®: We obtain RBE as the likelihood of current k! measurement
X prior which is our last best estimate of x at time & — 1 conditioned on
measurement at time k — 1 (denominator is just a normalizing constant).

(X|Zk) _ p(zk|x)p(x|Zk_1) __ current likelihood xlast best estimate
p  p(zg|ZkL) o normalizing constant

°See reference [1] pages 12-14, note: if Gaussian pdf of both prior and likelihood then the RBE — the LKF
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LSQ - Least Squares Estimation

Given measurements z, we wish to solve for x, assuming linear relationship:
Hx =z
If H is a square matrix with det H # 0 then the solution is trivial:

—1
x=H "z,

otherwise (most commonly), we seek such solution X that is closest (in Euclidean
distance sense) to the ideal:

X

argmin ||Hx — z||* = argmin {(HX —z) (Hx — z)}

X X
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Given the following matrix identities:
¢ (AB)' =B'A'
* x| =x"x
® V.b'x=Db
¢ V., x'Ax =2Ax

We can derive the closed form solution®:

| Hx —z|?=x"H'Hx—x'H'z—z'Hx+2z'z

O||Hx — z||?
ox
= x=(H'H)'H'z

—9H 'Hx —2H 'z = 0

®%in MATLAB use the pseudo-inverse pinv()
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If we have information about reliability of the measurements in z, we can capture

LSQ - Weighted Least Squares Estimation

this as a covariance matrix R (diagonal terms only since the measurements are
not correlated:

In the error vector e defined as e = Hx — z we can weight each its element by
uncertainty in each element of the measurement vector z, i.e. by R™!. The
optimization criteria then becomes:

X |7

argmin ||[R™!(Hx — z)

Following the same derivation procedure, we obtain the weighted least squares:

= x=(H'RH)"'H' R !z
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LSQ - Least Squares Estimation

The world is non-linear — nonlinear model function h(x) — non-linear LSQ":

X = argmin ||h(x) — z||?

® We seek such ¢ that for x; = xq + 0 the ||h(x1) — z||* is minimized.
® We use Taylor series expansion: h(xg 4 d) = h(xg) + VHyq0

[h(x1) —z|[* = [|h(x0) + VHxod —z||* = || VHxg 6~ (z — h(xo) )|

A b
where VHy is Jacobian of h(x):
[ Ohy Ohy
ah ox1 " Oxm
VHy g =—=| : :
aX dhy, oh,,
| Ox1 "7 Oxm_

"Note: We still measure the Euclidean distance between two points that we want to optimize over.
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LSQ - Least Squares Estimation

The extension of LSQ to the non-linear LSQ can be formulated as an algorithm:

1. Start with an initial guess %. ®

2. Evaluate the LSQ expression for § (update the VHj; and substitute). °

0= (VH&TVHX)_lvH&T[Z — h(f()]

3. Apply the § correction to our initial estimate: X := % + §.1°

4. Check for the stopping precision: if ||h(X) — z||? > € proceed with step (2)

or stop otherwise.!!

SNote: We can usually set to zero.

"Note: This expression is obtained using the LSQ closed form and substitution from previous slide.

""Note: Due to these updates our initial guess should converge to such % that minimizes the ||h(%X) — z||?
Note: € is some small threshold, usually set according to the noise level in the sensors.
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Example - Long Base-line Navigation SONARDYNE
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Example - Long Base-line Navigation

&0 .
40 .
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Example - Long Base-line Navigation
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Overview of Estimators

What have we learnt so far?

¢ MLE - we have the likelihood (conditional probability of measurements)
MAP - we have the likelihood and some prior (expected) knowledge
MMSE - we have a set of measurements of a random variable

RBE - we have the MAP and incoming sequence of measurements

® & o o

LSQ - we have a set of measurements and some knowledge about the
underlying model (linear or non-linear)

What comes next?

The Kalman filter - we have sequence of measurements and a state-space model
providing the relationship between the states and the measurements (linear model
— LKF, non-linear model — EKF)
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LKF - Assumptions

The likelihood p(z|x) and the prior p(x) on x are Gaussian, and the linear
measurement model z = Hx + w is corrupted by Gaussian noise w ~ A (0, R):
1 1

. T Tl
p(W) o (27T)n/2|R’1/2 eXp{ 2W R W}

The likelihood p(z|x) is now a multi-D Gaussian'?:

1 1 _
o) 2RI/ exp{—§(z — HX)TR '(z — Hx)}

p(z|x) = :

The prior belief in x with mean x~ and covariance P~ is a multi-D Gaussian:

P00 = o5 B 5 (¢ x0) TPE (e~ xc))

We want the a-posteriori estimate p(x|z) that is also a multi-D Gaussian, with
mean xXq and covariance P, — the equations of the LKF,

12Note: n, is the dimension of the observation vector and n., is the dimension of the state vector.
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Without proof'®, here are the main ideas exploited while deriving the LKF:
¢ We use the Bayes rule to express the p(x|z) — the MAP*
¢ We know that Gaussian x Gaussian = Gaussian
¢ Considering the above, the new mean x, will be the MMSE estimate,

¢ the new covariance P, is derived using a crazy matrix identity

BSee reference [1] pages 22-26
(z]x)p(x) __ pzIx)p(x) __ p(z|x)p(x) _ p(z[x)p(x)

p(z) - p(z) o jj‘gg p(z|x)p(x) dz normalising const

“Note: Recall the Bayes rule p(x|z) = 2
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LKF - The proof?

For the proof see reference [1] pages 22-26

The Linear Kalman Filter 24

We can figure out the new mean x¢ and covariance Py by expanding expression 3.9 and
comparing terms with expression 3.10. Remember we want to find the new mean because
Equation 1.14 tells us this will be the MMSE estimate. So expanding 3.9 we have:

x'Plx—xLP  'xo—x"P %o +x P %o +x"H'R "Hx—x"H'R 'z—zR 'Hx+z'R 'z
(3.11)

Now collecting terms this becomes:

P+ H R H)x—x" (P lxg +H'R'z) — (x"P;' + 2R 'H)x+ (x.P %o +2"R '2)

(3.12)
Expanding 3.10:
xTPox — xTPglxs — xAPg x + xAP %, (3.13)
Comparing first terms in 3.12 and 3.13 we immediately see that
Py = (P +H'R'H) . (3.14)
Comparing the second terms we see that:
P,'xg =P 'xc +H'R 'z (3.15)
Therefore we can write the MMSE estimate, xg as
Xe = (P! +H'R'H) '(Pg'xe + H'R 'z). (3.16)

We can combine this result with our understanding of the recursive Bayesian filter we
covered in section 1.6. Every time a new measurement becomes available we update our
estimate and its covariance using the above two equations.

There is something about the above two equations 3.14 and 3.16 that may make them
inconvenient — we have to keep inverting our prior covariance matrix which may be com-
putationally expensive if the state-space is large !. Fortunately we can do some algebra to
come up with equivalent equations that do not involve an inverse.

We begin by stating a block matrix identity. Given matrices A , B and C the following
is true (for non-singular A ):

(A+BCBY)1=A"1-A'B(C'+BTA!B)!BTA! (3.17)

lin some navigation applications the dimension of x can approach the high hundreds

24
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‘We can immediately apply this to 3.14 to get:

Py = P, — PoHY (R + HP HY)'HP (3.18)
=P, - WSW7 (3.19)
(3.20)
or

= (I- WH)P, (3.21)

where
S=HP.H' +R (3.22)
W =P H'S™! (3.23)

Now look at the form of the update equation 3.16 it is a linear combination of x and z .
Combining 3.20 with 3.16 we have:

%z = (P5' + H'R'H) }(P5'x + H'R'2) (3.24)
= (P;'+H'R'H) (H'R 'z) + (I - WH)P5(P;'xs) (3.25)
=(P;'+H'"R 'H) '(H'R 'z) + x; + W(—Hx,) (3.26)
= Cz + x5 + W(—Hx,) (3.27)
where
C=(P;'+H'R'H)'"H'R"! (3.28)
Taking a step aside we note that both
H'R'(HP_H' +R) =H'R'HP_H” + H” (3.29)
and also
(Pl+HRH)P.HY =HY + H'RHP H (3.30)
S0
(P;'+H'R 'H) '"H'R ' =P H (HP,H" +R) ' (3.31)
therefore
C=P,H’S! (3.32)
= Wirom 3.23 (3.33)

25
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We defined a linear observation model mapping the measurements z with
uncertainty (covariance) R onto the states x using a prior mean estimate X4
with prior covariance Pg.

The LKF update: the new mean estimate x, and its covariance P :

X@ — X@ —|—WV
P, =P, - WSW'

— where v is the innovation given by: v =z — Hx,
— where S is the innovation covariance given by: S = HP.H' + R, %
— where 1/ is the Kalman gain (~ the weights!) given by: W = P_H 'S~ 1.

What if we want to estimate states we don’t measure? — model

Note: Recall that if £ ~ N (u, X) and y = Mx then y ~ N (p, MSM ")
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Standard state-space description of a discrete-time system:
X(k) = FX(k—1) + Buw) + Gv

— where v is a zero mean Gaussian noise v ~ N (0, Q) capturing the uncertainty
(imprecisions) of our transition model (mapped by G onto the states),
— where u is the control vector!® (mapped by B onto the states),

— where F' is the state transition matrix'’.

For example the steering angle on a car as input by the driver.
YFor example the differential equations of motion relating the position, velocity and acceleration.
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The temporal-conditional'® notation, noted as (i7), defines %

) as the MIIMSE

estimate of x at time ¢ given measurements up until and including the time 7,
leading to two cases:

® X(jr) estimate at & given all available measurements — the estimate

® X(k|k—1) estimate at £ given the first £ — 1 measurements — the prediction

¥This notation is necessary to introduce when incorporating the state-space model into the LKF equations.
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The LKF prediction: using (¢|7) notation

X(klk—1) = FX(p—11k—1) + Bu)

Pir-1)=FPu 1 nFT +GQG'
The LKF update: using (7|7) notation

X (klk) = X(klk—1) T W (k) V(k)

P k) = Prjr—1) — WagSWo '

— where v is the innovation: vy =z — HX()—1)
— where S is the innovation covariance: S = HP(k|k_1)HT + R
— where 1 is the Kalman gain(~ the weights!): W ;) = P(k‘k_l)HTS_l
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LKF - Discussion

¢ Recursion: the LKF is recursive, the output of one iteration is the input to
next iteration.

¢ Initialization: the P (o) and X (o) have to be provided. 19

¢ Predictor-corrector structure:

the prediction is corrected by fusion of measurements via innovation, which
is the difference between the actual observation z(;,) and the predicted

observation HX (zx—1).

“Note: It can be some initial good guess or even zero for mean, one for covariance.
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¢ Asynchrosity: The update step only proceeds when the measurements

come, not necessarily at every iteration. %

¢ Prediction covariance increases: since the model is inaccurate the
uncertainty in predicted states increases with each prediction by adding the
GQGT term — the P, prediction covariance increases.

¢ Update covariance decreases: due to observations the uncertainty in
predicted states decreases / not increases by subtracting the positive
semi-definite WSW "2 — the P, update covariance decreases / not
Increases.

“*Note: If at time-step k there is no observation then the best estimate is simply the prediction X (k|k—1)
usually implemented as setting the Kalman gain to O for that iteration.

?lEach observation, even the not accurate one, contains some additional information that is added to the
state estimate at each update.
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LKF - Discussion

¢ Observability: the measurements z need not to fully determine the state
vector x, the LKF can perform?? updates using only partial measurements
thanks to:

— prior info about unobserved states and

— correlations.?3

¢ Correlations:

— the diagonal elements of P are the principal uncertainties (variance) of
each of the state vector elements.

— the off-diagonal terms of P capture the correlations between different
elements of x.

Conclusion: The KF exploits the correlations to update states that are not
observed directly by the measurement model.

*’Note: In contrary to LSQ that needs enough measurements to solve for the state values.
>Note: Over the time for unobservable states the covariance will grow without bound.
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LKF - Linear Navigation Problem

Example - Planet Lander: State-space model

A lander observes its altitude x above planet using time-of-flight radar. Onboard
controller needs estimates of height and velocity to actuate the rockets —
discrete time 1D model:

1 6T 50.5T2
X(k) = | 1 [XtE-D) s [V
\—— N ———

F G
Z = |2 0|lx) +w
(k) [CH | %(k) + Wy

where 07" is sampling time, the state vector x = [h h]" is composed of height h
and velocity A; the process noise v is a scalar gaussian process with covariance
Q?*, the measurement noise w is given by the covariance matrix R.?’

**Modelled as noise in acceleration—hence the quadratics time dependence when adding to position-state.
>Note: We can find R either statistically or use values from a datasheet.
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LKF - Linear Navigation Problem

Example - Planet Lander: Simulation model

A non-linear simulation model in MATLAB was created to generate the true
state values and corresponding noisy observation:

1. First, we simulate motion in a thin atmosphere (small drag) and vehicle
accelerates.

2. Second, as the density increases the vehicle decelerates to reach quasi-steady

terminal velocity fall.

¢ The true O'é of the process noise and the 0% of the measurement noise are
set to different numbers than those used in our linear model.?°

¢ Simple Euler integration for the true motion is used (velocity — height).

*®Note: we can try to change these settings and observe what happens if the model and the real world are
too different.
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Example - Planet Lander: Controller model
The vehicle controller has two features implemented:

1. When the vehicle descends below a first given altitude threshold, it deploys a
parachute (to increase the aerodynamic drag).

2. When the vehicle descends below a second given altitude threshold, it fires
rocket burners to slow the descend and land safely.

® The controller operates only on the estimated quantities.

Firing the rockets also destroys the parachute.
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Example - MATLAB

%sprocess plant model (constant velcoity with noise in acceleration)
Params.F = [1 Params.dT;
0 11;

%sprocess noise model (maps acceleration noise to other states)
Params.G = [Params.dT~2/2 ;Params.dT];

%sactual process noise truely occuring - atmospher entry 1is a bumpy business
%note this noise strength - not the deacceleration of the vehicle....
Params.SigmaQ = 0.2; %ms™{-2}

%process noise strength how much acceleration (varinace) in one tick
% we expect (used to 'explain' inaccuracies in our model)

%the 3 is scale factor (set it to 1 and real and modelled noises will
%be equal

Params.Q = (1.1xParams.SigmaQ)”2; %(ms”2 std)

%0observation model (explains observations in terms of state to be estimated)
Params.H = [2/Params.c_light 0];

%observation noise strength (RTrue) is how noisey the sensor really is
Params.SigmaR = 1.3e-7; %(seconds) 3.0e-7 corresponds to around 50m error....

%0bservation expected noise strength (we never know this parameter exactly)
%set the scale factor to 1 to make model and reallity match
Params.R = (1.1xParams.SigmaR)"2;
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Example - MATLAB

% ESTIMATION KALMAN FILTER %
function [XEst,PEst,S,Innovation] = DoEstimation(XEst,PEst,z)
global Params;

F = Params.F;G = Params.G:;Q = Params.Q;R = Params.R;H = Params.H;

Sprediction...
XPred = FxXEst;
PPred = FxPESTxF'+GxQx*G';

% prepare for update...
nnovation = z-HxXPred;
HxPPredxH'+R;

I
S
W = PPredxH'xinv(S);

% do update....
XEst = XPred+WxInnovation;

PEst = PPred-WxSxW';
return;
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LKF - Linear Navigation Problem

Example - Results for: o9 = 1.105"¢, g°% = 1.10

» 0Q

We did good modeling, errors are due to the non-linear world!
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LKF - Linear Navigation Problem

Example - Results for: o' = 100", o°% = 1.108"

We do not trust the measurements, the good linear model alone is not enough!
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LKF - Linear Navigation Problem

Example - Results for: o' = 1.10", o3°% = 100"

We do not trust our model, the estimates have good mean but are too noisy!
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Example - Results for: o}°% = 0.103"¢, o3°%*' = 1.10
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true

Q

We are overconfident measurements—fortunately, the sensor is not more noisy!
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Example - Results for: o°%' = 1.103", o3°%*' = 0.103"

We are overconfident in our model, but the world is really not linear ...
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Example - Results for: o} —
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We do neither trust the model nor measurements, we cope with the nonlinearities.
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® Linear models in the non-linear environment — BAD.
® Non-linear models in the non-linear environment — BETTER.

¢ Assume the following the non-linear system model function f(x) and the
non-linear measurement function h(x), we can reformulate:

X(k) — f(X(k—1), U—(k;),k:) T V(k)

Z(k) = W(Xk), ) k) + W)
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EKF - Non-linear Prediction

Without proof?’: The main idea behind EKF is to linearize the non-linear
model around the ,best" current estimate?S.

This is realized using a Taylor series expansion®.

Assume an estimate X(;,_1;—1) then

Xy ~ F(Xp—1)e—1), W) k) + VE<[X (k1) = X—1jk—1)] + - + V(i)

where the term VI, is a Jacobian of f(x) w.r.t. x evaluated at X ;1)

- Ofy ofy ]

VF 8f aX]_ e aXm
ox ofy, of,,

Ox1 T x|

?See reference [1] pages 39-41
*Note: the ,best" meaning the prediction at (k|k — 1) or the last estimate at (k — 1|k — 1)
*)Note: recall the non-linear LSQ problem of LBL navigation
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Without proof>’: The same holds for the observation model, i.e. the predicted

observation 7y ;,—1) is the projection of Xz ,_1) through the non-linear
measurement model3!.

EKF - Non-linear Observation

Hence, assume an estimate X ;1) then

Z (1) ~ h(Xkk—1), Wr) k) + VH X (g1e—1) — X(k)] + -+ W)

where the term VH, is a Jacobian of h(x) w.r.t. x evaluated at X5 ;_1):

[ Ohy Ohy -
8h 8X1 tee 8Xm
X Oh,, oh,,
_8X1 toe 8Xm_

See reference [1] pages 41-43
*'Note: for the LKF it was given by HR (1)
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plant model

N

x(klk —1) =&k — 1|k — 1), u(k), k)
N ~ 7 - ~ o Ny’
predicted state old state est control
P(klk—1) =VF.P(k—1lk—1)VF +VG,QVG,”
predicted‘;)variance old est ;c;/aria,nce proce;srnoise

observat)i(\)n model
z(k|k — 1) = h(x(k|k — 1))
———

predicted obs

Source: [1] P. Newman, EKF Based Navigation and SLAM, SLAM Summer School 2006
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prediction and correction measurement

. - ” N AN

x(k|k) =x(klk—-1)+W v(k) vk)= =zk) —zklk-1)
N—— N~~~ T 1
innovation W = P(k‘k’ — 1)VHX S_

new state estimate

P(klk)  =P(klk—1) — WSW’ ——
W A . ~ _J/
new covariance estimate update decreases uncertainty S = VHXP( k.‘ k — 1)VHXT + R
Innovation Covariance
Cofi . Ofi ] fof .. Ohi
ox ox ox ox
of 1 . oh | .
x oy ... Ofy o |oh, ... ohy
| O%x1 OxXm 4 L ox1 OXm 4

Y

evaluated at x(k — 1|k — 1) evaluated at %(k|k — 1)

Source: [1] P. Newman, EKF Based Navigation and SLAM, SLAM Summer School 2006
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EKF - Features & Maps

Assumption: The world is represented by a set of discrete landmarks (features)
whose location / orientation and geometry can by described by a set of discrete
parameters — concatenated into a feature vector called Map:

Xf 1
Xf 2

M = Xf 3

Xfn

Examples of features in 2D world:

¢ absolute observation: given by the position coordinates of the landmarks in
the global reference frame: x¢; = [z; y;] ' (e.g., measured by GPS)

¢ relative observation: given by the radius and bearing to landmark:
x¢; = [r; 0;] ' (e.g., measured by visual odometry, laser mapping, sonar)
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EKF - Localization

Assumption: we are given a map M and a sequence of vehicle-relative3?

observations Z* described by likelihood p(Z¥|M, x ).

Task: to estimate the pdf for the vehicle pose p(x,|M, Z¥).

K\ p(XUanZk) - p(Zk‘vav) x p(M, x,) -
PMLZY) =TTz T p(ZNM) < p(M)

P(Z¥IM, %) X p(x0|M) X p(M) 5 (Z5M ) xp (30| M)

— f_"‘;o p(Zk“\/L Xv)p(X,U’M) d:l?v « p(M) normalising constant

Solution: p(x,|M) is just another sensor — the pdf of locating the robot when
observing a given map.

32Note: Vehicle-relative observations are such kind of measurements that involve sensing the relationship
between the vehicle and its surroundings—the map, e.g. measuring the angle and distance to a feature.
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Assumption: we are given a vehicle location x,, *> and a sequence of
vehicle-relative observations Z* described by likelihood p(Z*|M, x ).

Task: to estimate the pdf of the map p(M|Z* x ).

v, M, Z* ZX|M, x, M
p(M|Zk,XU) :p(X 7k ’ ) :p( ‘ k7X ) Xp( 7Xv) _
p(Z¥, x,) p(Z¥|x,) X p(Xy)

p(Zk‘Maxv) X p(M‘XU) X p(X’U) o p(Zk|M,XrU>Xp(M‘XU)

T p(ZRML %, )p(Mxy) dM x p(x,)  Mermelisineconstant

54/55

Solution: p(M|x, ) is just another sensor — the pdf of observing the map at

given robot location.

3Note: Ideally derived from absolute position measurements since position derived from relative measu-
rements (e.g. odometry, integration of inertial measurements) is always subjected to a drift—so called dead

reckoning
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If we parametrize the random vectors x,, and M with mean and variance then
the (E)KF will compute the MMSE estimate of the posterior.

What is the SLAM and how can we achieve it?

\ 4

*¢ & o6 o o

With no prior information about the map (and about the vehicle—no GPS),
the SLAM is a navigation problem of building consistent estimate of both
the environment (represented by the map—the mapping)

and vehicle trajectory (6 DOF position and orientation—the localization),
using only proprioceptive sensors (e.g., inertial, odometry),

and vehicle-centric sensors (e.g., radar, camera, laser, sonar etc.).
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