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Walking robots
Classification of walking robots

Static walking:
center of mass always above the feet, the robot can not fall, even
if stopped at any time.

Dynamic walking: center of mass not always above the feet, it
should go on moving not to fall

Two-dimensional walking (2D-walking):
Only sagittal plane studied, the forward movement and stability is
believed to be the crucial for the walking-like movement.

Three-dimensional walking (3D-walking):
Full orientation including the lateral movement studied, the lateral
balance should be (even intuitively) easier to handle, than the
forward movement.
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Walking robots
Classification of walking robots

Fully actuated walking robots:

Large feet in full contact with the ground and actuated ankles.

Stable (static) walking usually fully actuated.

Unstable (dynamic) walking can be also fully actuated.

Zero moment point (ZMP) should be computed and ensured
to be bellow the feet.

Underactuated walking robots:

Unstable (dynamic) walking only.

Underactuated angle is at the pivot point.

Feet are absent or very small with weakly actuated ankles.
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Walking robots
Fully actuated walking

Slow movement, weak coupling between links and strong
actuators - the kinematic trajectory planning possible and
implementable through the standard control engineering
design (e.g. PD or PID controllers). ZMP condidion impose
actuators limitations.

Fully actuated mechanical system is theoretically well
understood even if its full dynamics (including forces and
torques) should be considered - computed torque principle.

The typical fully actuated static walking humanoids (like
HONDA) are heavy, with strong joints actuation and very
slow dynamic walking coupling between the links dynamics, or
even with the static walking only.
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Walking robot with knees, ankles, feet and torso
Fully actuated state - ZMP bellow the foot
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Walking robots
Intrinsic walking is the underactuated walking

BUT! What if the walk should be swift, legs light, energy
efficiency strived for? Then the fully actuated walking
robotics is not an option.

The ZMP condition is demanding and therefore the torque in
ankles should be, anyway, small, only the balancing one and
to facilitate the full foot contact with the ground.

If the ZMP condition is violated, the full flat contact of the
foot is lost and another angle - another degree of freedom
appears - yet, there is unactuated angle again and the whole
robot becomes underactuated.
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Walking robot with knees, ankles, feet and torso
Underactuated situation - ZMP not bellow the foot
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Walking robots
Intrinsic walking is the underactuated walking

Real walking: both the fully actuated and the underactuated
walking phases present.

Conclusion: It is reasonable to study the underactuated
walking, as a natural abstraction of weak ankles up to the
case with NO ankles.
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Walking robots
Planar walking
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Walking robots

Plan: The underactuated planar walking will be further studied
in detail.

Indeed, as noted before, the control along the sagittal plane is the
most challenging and interesting one. Instability is actually the
source of the movement forward.
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Underactuated mechanical systems
Introduction

Less actuators than degrees of
freedom (DOF]

The n-link with n − 1 actuators

Nonlinear techniques needed

Pendubot

Acrobot

Rotational inverted pendulum

...

x

y
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Underactuated mechanical systems
Acrobot (aka Compass-Gait Walker (CGW))

The simplest underactuated
walking model, 2 DOF, 1
actuator.

To model walking, the
underactuated angle is at the
pivot point.

“Planar” walking-like movement
possible only theoretically.

Acrobot, or Compass-Gait
Walker (CGW), ...

x

y

q1

q2

τ2
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Underactuated mechanical systems
The four-link walker

Acrobot walking: unrealistic

4-link: more realistic

4-link: 4 DOF, 3 actuators

Legs with knees, without feet

x

y

q1

q2

−q3

q4

τ2

τ3

τ4
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Underactuated mechanical systems
The four-link walker - Configuration and physical parameters

x

y

q1

q2

−q3

q4

u2

u3

u4

m1

lc1

l1

m2

lc2

l2 m3

lc3
l3

m4

lc4

l4

m1,m4 1 [Kg] m2,m3 1.5 [Kg]
l1, l4 0.5 [m] lc1, lc4 0.3 [m]
l2, l3 0.6 [m] lc2, lc3 0.4 [m]

S. Čelikovský Modelling and Control of the Walking Robots 15 / 58



Introduction Underactuated 2D-walking Modeling Virtual constraints Constraints realization Sensors Skipped Literature

Underactuated mechanical systems
The three-link (aka Compass-Gait Walker with Torso)

l3

lc3

q1

q3

q2
l1

lc1

l2

lc2

m1
m2

m3

stance
leg swing

leg

torso
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Underactuated mechanical systems
Possible general underactuated planar n-link walker scheme
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Modeling of the walking robots
Two different model phases

1. Continuous-time phase (aka single support phase, ...). Model:
ordinary differential equations with control inputs, resulting in the
standard controlled continuous-time system studied in various
subjects before (B3B35ARI, B3M35NES, B3M35LSY).

2. Discrete-time phase (aka double-support phase). Model:
uncontrolled mappings of the state to the new state, with some
jump, or also impulsive system. It is a single application of a
discrete-time system without input.
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The continuous-time models of the mechanical systems
Euler-Lagrange formalism

Choose the generalized coordinates q = (q1, . . . , qn)> and the
generalized velocities q̇ = (q̇1, . . . , q̇n)>.

Compute the system kinetic energy K(q, q̇), potential energy
V(q) and Lagrangian L(q, q̇):

L(q, q̇) = K − V =
1

2
q̇TD(q)q̇ − V(q).

System dynamics given by the Euler-Lagrange formalism
d
dt

∂L
∂q̇1
− ∂L

∂q1
...

d
dt

∂L
∂q̇n
− ∂L

∂qn

 =

 τ1
...
τn

 ,
τ1, . . . , τn are generalized external forces acting along the
generalized coordinates q1, . . . , qn, respectively.

D(q) = D(q)> > 0 is the inertia (aka mass) matrix.
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The continuous-time models of the mechanical systems
Euler-Lagrange formalism

The Euler-Lagrange formalism gives the system of the
second-order ordinary differential equations

D(q)q̈+C (q, q̇)q̇+G (q) = (τ1, . . . , τn)>, G (q) = −
[
∂V
∂q

]>
,

C (q, q̇)q̇ =

[
n∑

i=1

∂D(q)

∂qi
q̇i

]
q̇ −

[
∂

∂q

[
1

2
q̇TD(q)q̇

]]>
,

C (q, q̇) is the matrix of the Coriolis and centrifugal forces,
G (q) is the gravity vector.

The choices of generalized coordinates and generalized
velocities are related:

∑n
i=1 τidqi should be the infinitesimal

increment of energy of the system done by work of external
forces. In particular, if generalized coordinates are angles,
then the generalized forces are torques.
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The continuous-time models of the mechanical systems
Fully actuated controlled system in standard form of the first-order ODE

Controlled inputs (actuators) are the generalized forces, all of
them available and independent - full actuation:

u =

 u1
...
un

 =

 τ1
...
τn


The state vector is x = (x1, . . . , x2n)> = (x1, x2)>

x1 = (q1, . . . , qn), x2 = (q̇1, . . . , q̇n).

The standard form of the first-order controlled system:

ẋ = f ST (x) + GST (x)u, GST (x) = D(x1)−1

f ST (x) =
(
x2, f (x)

)>
, f (x) = D−1(x1)

(
−C (x1, x2)x2 − G (x1)

)>
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The continuous-time models of the mechanical systems
Exact feedback feedback linearization and computed torque principle (inverse dynamics)

For fully actuated system take the feedback (introduce the new
“virtual” input u)

u = f (x) + GST (x)u, u = [GST (x)]−1(u − f (x)),

which gives the simple linear system of n double integrators

ẋ1 = xn+1, . . . , ẋn = x2n, ẋn+1 = u1, . . . , ẋ2n = un.

This gives the simple model based implementation of any smooth
kinematically planned trajectory qr (t), containing some PD
controller (but any gains kpi < 0, kdi < 0, i = 1, . . . , n, sufficient):

u = [GST (x)]−1


 q̈r1 + kp1 (q1 − qr1) + kd1 (q̇1 − q̇r1)

...
q̈rn + kpn (qn − qrn) + kdn (q̇n − q̇rn)

− f (x)

 .
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The continuous-time models of the mechanical systems
Exact feedback feedback linearization and computed torque principle (inverse dynamics)

Indeed, for virtual input u that is equivalent to

u =

 q̈r1 + kp1 (q1 − qr1) + kd1 (q̇1 − q̇r1)
...

q̈rn + kpn (qn − qrn) + kdn (q̇n − q̇rn)


Recalling, that x1 = (q1, . . . , qn), x2 = (q̇1, . . . , q̇n),
ẋ1 = xn+1, . . . , ẋn = x2n, ẋn+1 = u1, . . . , ẋ2n = un and introducing

e1 = q1 − qr1, . . . , en = qn − qrn

gives
ė1 = en+1, . . . , ėn = e2n,

ėn+1 = kp1 e1 + kd1 en+1, . . . , ė2n = kpn en + kdn e2n.
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The continuous-time models of the mechanical systems
Exact feedback feedback linearization and computed torque principle (inverse dynamics)

Recall, that GST (x) = D(x1)−1, [GST (x)]−1 = D(x1) = D(q)
giving

[GST (x)]−1f (x) = C (q, q̇)q̇ + G (q)

u = D(q)

 q̈r1 + kp1 (q1 − qr1) + kd1 (q̇1 − q̇r1)
...

q̈rn + kpn (qn − qrn) + kdn (q̇n − q̇rn)

+C (q, q̇)q̇+G (q).

COMPUTED TORQUE PRINCIPLE (CTP): substituting the
desired linear second order dynamics of q into the second order
ODE obtained by Euler-Lagrange formalism gives the torque.

CTP introduced in robotics earlier than the exact feedback
linearization (EFL) in nonlinear control theory.

Clearly, for the fully actuated mechanical systems EFL=CTP.

S. Čelikovský Modelling and Control of the Walking Robots 24 / 58



Introduction Underactuated 2D-walking Modeling Virtual constraints Constraints realization Sensors Skipped Literature

The continuous-time models of the mechanical systems
Underactuated mechanical systems

Underactuated system dynamics given by the Euler-Lagrange
formalism

d
dt

∂L
∂q̇1
− ∂L

∂q1

...
d
dt

∂L
∂q̇n
− ∂L

∂qn

 =

 τ1
...
τn

 , τ1 = · · · = τk = 0.

Coordinates q1, . . . , qk directly unactuated, qk+1, . . . , qn
directly actuated, k is the underactuation degree.

Analogously, as for the fully actuated systems (D,C ,G the
same), the second order dynamics obtained.

D(q)q̈ + C (q, q̇)q̇ + G (q) = (0, . . . , 0, τk+1, . . . , τn)>
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The continuous-time models of the mechanical systems
Underactuated controlled system in standard form of the first-order ODE

u =



0
...
0

uk+1
...
un


=



0
...
0

τk+1
...
τn


, x = (x1, . . . , x2n)> = (x1, x2)>

x1 = (q1, . . . , qn), x2 = (q̇1, . . . , q̇n).

ẋ = f ST (x) + GST (x)u, GST (x) = D(x1)−1

f ST (x) =
(
x2, f (x)

)>
, f (x) = D−1(x1)

(
−C (x1, x2)x2 − D(x1)

)>
Exact feedback linearization and computed torque principle clearly
not possible using the previously described approach.
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The continuous-time models of the mechanical systems
Underactuated mechanical planar walking-like chains

2D-walking models have usually underactuation degree k = 1.
The angle at the pivot point q1 is unactuated, q2, . . . , qn
directly actuated.

For these planar walking-like chains, kinetic energy does not
depend on q1, i.e. D(q) ≡ D(q2, q3, . . . , qn) and q1 is called
cyclic variable, q2, . . . , qn are called shape variables. Any
absolute orientation angle is also cyclic variable. Relative
angles are shape variables.

3D-walking models have underactuation degree k = 2, but
only one cylic variable.
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The continuous-time models of the mechanical systems
Underactuated mechanical planar walking-like chains

Summarizing, the underactuated planar walking models are
as follows:

D(q)q̈ + C (q, q̇)q̇ + G (q) =


0
u2
...
un


But, how to obtain these models in detail?
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The continuous-time models of the mechanical systems
Euler-Lagrange formalism for planar mechanical chains - computing the K and V

Lagrangian L requires kinetic and potential energy

L(q, q̇) = K − V =
1

2
q̇TD(q)q̇ − V(q).

The kinetic energy K of the each rigid link:

K =
1

2
mvTv +

1

2
ωTIω.

Here, m is the total mass of the each rigid link; v is the link center

of mass (COM) velocity vector, ω is the link rotation angular

velocity with respect to its COM; I is the symmetric 3 × 3 inertia

tensor of the link. In 2D case, just a scalar.
The potential energy V of the each rigid link: V = mgh. Here,

h is the height of the center of mass of the link.
Choice of q, q̇ depends on available inputs. This causes often
complex D(q).
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The continuous-time models of the mechanical systems
Euler-Lagrange formalism for planar mechanical chains - Acrobot (aka CGW) example.

q1

q2

l1

lc1

l2

lc2

m1

m2
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The continuous-time models of the mechanical systems
Euler-Lagrange formalism for planar mechanical chains - Acrobot (aka CGW) example.

x

y
base frame

m1

m2

q1

−q2
lc1

l1

lc2
l2

link #1

link #2
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The continuous-time models of the mechanical systems
Euler-Lagrange formalism for planar mechanical chains - Acrobot (aka CGW) example.

K =
1

2
q̇TD(q)q̇, D(q) =

[
θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2

θ2 + θ3 cos q2 θ2

]

C (q, q̇) =

[
−q̇2θ3 sin q2 −(q̇1 + q̇2)θ3 sin q2

q̇1θ3 sin q2 0

]
V(q) = [θ4 cos q1 + θ5 cos (q1 + q2)]

G (q) =

[
−θ4 sin q1 − θ5 sin (q1 + q2)

−θ5 sin (q1 + q2)

]
,

θ1 = m1l
2
c1 + m2l

2
1 + I1, θ2 = m2l

2
c2 + I2,

θ3 = m2l1lc2, θ4 = gm1lc1 + gm2l1, θ5 = gm2lc2.

S. Čelikovský Modelling and Control of the Walking Robots 32 / 58



Introduction Underactuated 2D-walking Modeling Virtual constraints Constraints realization Sensors Skipped Literature

The continuous-time models of the mechanical systems
The three-link (aka Compass-Gait Walker with Torso)

l3

lc3

q1

q3

q2
l1

lc1

l2

lc2

m1
m2

m3

stance
leg swing

leg

torso
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The continuous-time models of the mechanical systems
The three-link (aka Compass-Gait Walker with Torso)

Mathematical model

D = [dij ], i , j = 1, 2, 3, D> = D > 0, G = [G1,G2,G3]>,

d11 = I1 + I2 + I3 + l21m2 + l21m3 + l2c1m1+

l2c2m2 + l2c3m3 + 2l1lc2m2 cos q2 + 2l1lc3m3 cos q3,

d12(q2) = m2l
2
c2 + l1m2 cos q2lc2 + I2

d13(q3) = m3l
2
c3 + l1m3 cos q3lc3 + I3, d23 = 0,

d22(q2, q3) = m2l
2
c2 + I2, d33(q2, q3) = m3l

2
c3 + I3,

G1 = −g (l1m2 sin q1 + l1m3 sin q1 + lc1m1 sin q1+

lc2m2 sin q1 + q2 + lc3m3 sin q1 + q3) ,

G2 = −glc2m2 sin q1 + q2, G3 = −glc3m3 sin q1 + q3.
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The continuous-time models of the mechanical systems
The four-link model

x

y

q1

q2

−q3

q4

u2

u3

u4

m1

lc1

l1

m2

lc2

l2 m3

lc3
l3

m4

lc4

l4

m1,m4 1 [Kg] m2,m3 1.5 [Kg]
l1, l4 0.5 [m] lc1, lc4 0.3 [m]
l2, l3 0.6 [m] lc2, lc3 0.4 [m]
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The continuous-time models of the mechanical systems
The four-link model

D(q)=


d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44

,C (q, q̇)=


C 1

C 2

C 3

C 4

,G (q)=


G1

G2

G3

G4

,
d11 = (I1 + I2 + I3 + I4 + l21m2 + l21m3 + l21m4

+ l22m3 + l22m4 + l23m4 + l2c1m1

+ l2c2m2 + l2c3m3 + l2c4m4 − 2l1l3m4 cos(q2 + q3)

− 2l1lc3m3 cos(q2 + q3)− 2l2lc4m4 cos(q2 + q4)

+ 2l1l2m3 sin(q3) + 2l1l2m4 sin(q3) + 2l2l3m4 sin(q2) + 2l1lc2m2 sin(q3)

+ 2l2lc3m3 sin(q2) + 2l3lc4m4 sin(q4)− 2l1lc4m4 sin(q2 + q3 + q4))

d12 = (I3 + I4 + l23m4 + l2c3m3 + l2c4m4

− l1l3m4 cos(q2 + q3)− l1lc3m3 cos(q2 + q3)

− l2lc4m4 cos(q2 + q4) + l2l3m4 sin(q2) + l2lc3m3 sin(q2)

+ 2l3lc4m4 sin(q4)− l1lc4m4 sin(q2 + q3 + q4))
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The continuous-time models of the mechanical systems
Four-link model

d13 = (I2 + I3 + I4 + l22m3 + l22m4 + l23m4 + l2c2m2 + l2c3m3 + l2c4m4−
l1l3m4 cos(q2 + q3)− l1lc3m3 cos(q2 + q3)− 2l2lc4m4 cos(q2 + q4)+
l1l2m3 sin(q3) + l1l2m4 sin(q3) + 2l2l3m4 sin(q2) + l1lc2m2 sin(q3)+
2l2lc3m3 sin(q2) + 2l3lc4m4 sin(q4)− l1lc4m4 sin(q2 + q3 + q4))

d14 = (I4 + l2c4m4 − l2lc4m4 cos(q2 + q4)+
l3lc4m4 sin(q4)− l1lc4m4 sin(q2 + q3 + q4))

d22 = (m4l23 + 2m4 sin(q4)l3lc4 + m3l2c3 + m4l2c4 + I3 + I4)

d23 = (m4l23 + 2m4 sin(q4)l3lc4 + l2m4 sin(q2)l3 + m3l2c3 + l2m3 sin(q2)lc3+
m4l2c4 − l2m4 cos(q2 + q4)lc4 + I3 + I4)

d24 = (m4l2c4 + l3m4 sin(q4)lc4 + I4)

d33 = (I2 + I3 + I4 + l22m3 + l22m4 + l23m4+
l2c2m2 + l2c3m3 + l2c4m4 − 2l2lc4m4 cos(q2 + q4) + 2l2l3m4 sin(q2)+
2l2lc3m3 sin(q2) + 2l3lc4m4 sin(q4))

d34 = (I4 + l2c4m4 − l2lc4m4 cos(q2 + q4) + l3lc4m4 sin(q4))

d44 = (m4l2c4 + I4)
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The continuous-time models of the mechanical systems
Four-link model

G1 = −glc4m4 sin(q1 + q2 + q3 + q4)− gl2m3 sin(q1 + q3)− gl2m4 sin(q1 + q3)
−glc2m2 sin(q1 + q3)− gl1m2 sin(q1)− gl1m3 sin(q1)− gl1m4 sin(q1)−
glc1m1 sin(q1)− gl3m4 sin(q1 + q2 + q3)− glc3m3 sin(q1 + q2 + q3)

G2 = −glc4m4 sin(q1 + q2 + q3 + q4)− gl3m4 sin(q1 + q2 + q3)
−glc3m3 sin(q1 + q2 + q3)

G3 = −glc4m4 sin(q1 + q2 + q3 + q4)− gl2m3 sin(q1 + q3)−
gl2m4 sin(q1 + q3)− glc2m2 sin(q1 + q3)
−gl3m4 sin(q1 + q2 + q3)− glc3m3 sin(q1 + q2 + q3)

G4 = −glc4m4 sin(q1 + q2 + q3 + q4).
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The hybrid models of the mechanical systems
Swing and impact phases

Contact mechanical systems are modeled using both
continuous-time and discrete-time dynamics.

Hybrid systems combine both dynamics:

continuous-time dynamics

ẋ = F (x , u), x ∈ C

discrete-time dynamics.

x+ = Γ(x−, u), x ∈ D

Usually, D is some lower dimensional submanifold of C.

For walking Γ(x−, u) ≡ Γ(x−), as only impulsive forces acting.
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The hybrid models of the mechanical systems
Swing and impact phases

Actually: q̇+ = Φ(q−)q̇− and q+ undergoes some simple
relabeling map due to switching the legs. Φ is called as the
impact matrix.

Switching of legs is to keep the same continuous time model
for both legs being the swing one. Alternative would be hybrid
systems with two continuous-time models.

Both leg are usually assumed to have the same properties.
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Discrete-time dynamics modeling
Impact matrix modeling

When the swing leg of the Acrobot hits the ground, the
impact occurs.

Impact causes instantaneous jump in angular velocities q̇
while angular positions q remain continuous in time.

The impact is modeled as a contact between two rigid bodies:

double support phase is instantaneous,
overall energy and momentum is preserved,
no swing leg rebound,
no swing leg slipping.

The impact modeling is based on the continuous-time models
shortly “just before the impact” and “just after the impact”.
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Discrete-time dynamics modeling
Impact matrix modeling

The extended continuous-time model is needed that unifies
both situations. It has more DOF generalized coordinates
denoted qe , its matrix of inertia denoted De(qe).

The impact matrix computation is based on the equations:

De

[
q̇+
e − q̇−e

]
= Fext , E2(q−e )q̇+

e = 0,

where E2(q−
e ) = ∂Υ(qe )

∂qe
(q−

e ), Υ represents swing leg’s end point

Carthesian coordinates, q−
e corresponds to the double support

configuration. Vector Fext is the assumed cumulative effect of the

impulsive forces during the infinitesimally small time interval.

Fext is unknown, but can it be eliminated.
E.g., for Acrobot there are 10 scalar variables: q̇−

e , q̇+
e ,Fext and 6

equations. So, one can obtain 4 linear equations relating q̇−
e and q̇+

e , i.e.,

consequently, two linear equations for q̇−, q̇+ in the form q̇+ = Φ(q−)q̇−.
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Discrete-time dynamics modeling
Relabeling map

At impact, the swing leg, respectively stance leg, becomes the
new stance leg, respectively the new swing leg.

Example: the Acrobot’s relabeling of q1 and q2 coordinates.

q2 q̃2

-q1 q̃1

This picture also helps to undestand the essence and the need
of that previously mentioned extended model.
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Virtual holonomic constraints
Definition and regularity

Virtual holonomic constraints (VHC) of q ∈ Rn are equalities

ϕ1(q) = ϕ2(q) = . . . = ϕl(q) = 0.

Smooth functions ϕ1, . . . , ϕl satisfy rank{dϕ1(q), . . . ,dϕl(q)} = l
∀q ∈ {q ∈ Rn|ϕ1(q) = · · · = ϕl(q) = 0}.

VHC are called global if ϕ1(q), . . . , ϕl(q) can be completed to a
global diffeomorphism of Rn.

Locally regular VHC around some q0:

rank


∂ϕ1
∂q
...

∂ϕl
∂q

 (q0)D−1(q0)

[
0k×n
In−k

]
= l

Locally regular VHC: locally regular around any q0 ∈ Rn.
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Walking design using virtual constraints
EXAMPLE: VHC for the four-link walking

Virtual holonomic constraints enforced by suitable feedback control

Number of DOF and actuators reduced, problem decomposed

Two different options:

I. Three constraining functions

Knees and hip angles made to depend on the stance leg angle

Design of 3 constraining functions

Constrained dynamics has 1 DOF and no actuator =
uncontrolled generalized inverted pendulum

Cyclic property of unactuated variable lost

Example of the so-called noncollocated constraints
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Walking design using virtual constraints
Four-link with 3 VHC - problem of stable tracking of the walking trajectory

Stable tracking of the above trajectory during swing phase
only is not possible

Reason: generalized inverted pendulum is unstable.

generalized inverted pendulum = zero dynamics wrt. outputs
ϕ1 = q2 − Φ2(q1), ϕ2 = q3 − Φ3(q1), ϕ3 = q4 − Φ4(q1).

Nevertheless, one can design it to be hybrid stable, i.e.
including impacts and multi-step walking.

Ch. Chevallereau, J. Grizzle and others: hybrid zero dynamics,
hybrid minimum phase systems.

Physically: impact may have stabilizing influence. Intuitively,
COM pointing downwards.

Analysis and proof very complicated, hybrid limit cycles,
Poincare sections, ...
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Walking design using virtual constraints
Virtual constraints for the four-link walking

II. Two constraining functions

both knees made to depend on the hip angle

design of 2 constraining functions

constrained dynamics has 2 DOF and 1 actuator

previously developed techniques for the Acrobot applicable

constrained dynamics easier enforced - the so-called
collocated VHC (Čelikovský 2015, Čelikovský and Anderle
2016–2017, Anderle and Čelikovský 2018.).
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Realization of the virtual holonomic constraints
Regular VHC and input-output exact feedback linearization

ẋ = f (x)+u1g
1(x)+. . .+umg

m(x), y = [h1(x), . . . , hp(x)], m ≥ p,

x ∈ Rn, y ∈ Rp, u ∈ Rm, f (x0) = 0, rank[g1| · · · |gm](x0) = m, h(x0 = 0.

Lie derivative:

Lf h := f1
∂h

∂x1
+. . .+fn

∂h

∂xn
, L0

f h := h, Lk+1
f h := Lf L

k
f h,∀k = 1, 2 . . .

Vector relative degree (r1, . . . , rp) :

Lg iLkf hj ≡ 0, ∀k = 0, . . . , rj − 2, i = 1, . . . ,m, j = 1, . . . , p and

rankD(x0) = p, D(x) :=

 Lg1Lr1−1
f h1 . . . LgmLr1−1

f h1
...

...

Lg1L
rp−1
f hp . . . LgmL

rp−1
f hp

 (x)

D is called as the decoupling matrix.
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Realization of the virtual holonomic constraints
Regular VHC and input-output exact feedback linearization

It holds (here (·)(r) stands for the r -th order time derivative): y
(r1)
1 (t)

...

y
(rp)
p (t)

 = D(x)

 u1
...
um

+

 Lr1
f h1
...

L
rp
f hp

 .
Moreover, there are r1 + r2 + . . .+ rn independent functions:

y1 = h1(x), y
(1)
1 = Lf h1(x), . . . , y

(r1−1)
1 = Lr1−1

f h1(x), . . .

yp = hp(x), y
(1)
2 = Lf hp(x), . . . , y

(rp−1)
p = L

rp−1
f hp(x).

These function can be used as a part of new coordinates, giving
(r1 + r2 + . . .+ rn)-dimensional linear subsystem, consisting from l
independent integrators chains having lengths r1, . . . , rp.
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Realization of the virtual holonomic constraints
Regular VHC and input-output exact feedback linearization

Note that:

D(x) =
∂

∂u

 ÿ1(t)
...

ÿl(t)


In other words, regular VHC are such that the mechanical system
with n − k inputs un−k+1, . . . un and l outputs

y1 = ϕ1(q), y2 = ϕ2(q), . . . , yl = ϕl(q)

has the vector relative degree (2, . . . , 2).
Therefore, the assumption l ≤ n− k is needed. One can enforce at
most as much constraints as it is the number of inputs.
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Realization of the virtual holonomic constraints
Regular VHCs and input-output exact feedback linearization

Realization can be done e.g. by

ÿ1 = −k1
1y1 − k2

1 ẏ1, . . . , ÿl = −k1
l yl − k2

l ẏl ,

where all k ’s are positive reals. Recall, that
y1 = ϕ1(q), y2 = ϕ2(q), . . . , yl = ϕl(q) and therefore also

ẏ1 =
∂ϕ1

∂q
q̇, . . . , ẏl =

∂ϕl

∂q
q̇.

x := (q>, q̇>)>, f (x) = (x1, . . . , xn,−D−1(Cq̇−G )>)>, G = D−1, ÿ1
...
ÿl

 = D(q, q̇)u+

 L2
f ϕ1
...

L2
f ϕl

 =⇒ u = [D(q, q̇)]−1

 ÿ1 − L2
f ϕ1

...
ÿl − L2

f ϕl


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Sensors, estimation and identification
Sensors

All previous approaches to be implemented require state
estimation, or direct measurements of all states.

Angular positions measurement at rotary joints efficient and
almost noisy free.

Relative measurements: only increments of angle relative to
their initial value measured, e.g. IRC (Incremental Rotary
enCoder) - usually optical, very good precision and low noise.

Absolute measurements: absolute angle, e.g. potentiometer
(simple, cheap, but low precision), magnetic position sensor
(Hall effect sensor, much better, but not as IRC), ...

Angle not related to any rotary joint, e.g. the angle at the
pivot point (or any other absolute orientation angle),
measured indirectly only, if the robot is autonomous:
inertial sensors, digital gyroscopes, laser distance sensors...
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Sensors, estimation and identification
State estimation

Velocities either measured directly by gyroscopes, or
estimated.

For noisy-free angular positions measurements (e.g. IRC),
numerical time derivative applicable, or filtered numerical time
derivatives, fast evaluation circuit needed.

For the absolute orientation angle estimation more
complicated.

In 2D-walking platforms often noisy-free measurement of the
absolute orientation angle implemented in supporting
platform.

Kalman filtering and other methods from control courses used
as well, with some adaptation (Extended Kalman Filter,
Hybrid Kalman Filter, ...).
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Sensors, estimation and identification
Identification

Mechanical parameters can be well-measured in advance
(weights, lengths, moments of inertia).

These measurements may serve for further tuning as the
parameters initial estimates.

Noise in drives effects need to be attenuated.

If all angles are well measured, angular velocities and angular
accelerations well computed, estimation of θ1, θ2, ... becomes
a standard linear problem, e.g. least squares and maximal
likehood method applicable.

Again, there is a problem with absolute orientation angle. But
it can be handled easier, than in state estimation problem, as
for identification off-line experiments possible, using some
frames and platforms with extra measurements,...
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Sensors, estimation and identification
Identification - Acrobot (aka CGW) example

D(q)q̈ + C (q, q̇)q̇ + G (q) =

[
0
u2

]

C (q, q̇) =

[
−q̇2θ3 sin q2 −(q̇1 + q̇2)θ3 sin q2

q̇1θ3 sin q2 0

]

G (q) =

[
−θ4 sin q1 − θ5 sin (q1 + q2)

−θ5 sin (q1 + q2)

]
,

θ1 = m1l
2
c1 + m2l

2
1 + I1, θ2 = m2l

2
c2 + I2,

θ3 = m2l1lc2, θ4 = gm1lc1 + gm2l1, θ5 = gm2lc2.
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Related skipped problems

Running robots

Jumping robots

And many others ...

Note, that running and jumping may be in a certain sense easier
than walking (compare to track and field athletes experience!)

Mathematical modeling explanation: no need for the complex
continuous-time walking-like dynamics, with no contact with
ground, robot is governed just by laws of passive free movement
under the gravity and air resistance influence.
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S. Čelikovský and M. Anderle: Hybrid invariance of the collocated virtual
holonomic constraints and its application in underactuated walking ,
IFAC-PapersOnLine. Volume 49, Issue 18, p. 802-807, The 10th IFAC
Symposium on Nonlinear Control Systems, Monterey, California, USA (2016).
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