
Digital Geometry Processing

Algorithms for Representing, Analyzing and Comparing 
3D shapes



Today

• Previous lecture summary

• Triangle mesh basics

• Shape Simplification

• Shape Subdivision
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Last Time
Types of 3D scanners: 

− Time of Flight
• Delay-based
• Frequency-based

− Triangulation
• Laser-based (single line)
• Structured light (multiple 

patterns)

− Computer Vision-based
• Depth-from-stereo
• Depth-from-blur

− Example: Microsoft Kinect



Last Time
Partial Scans -> Single Point Cloud 

Main Approach: Iterative 
Closest Point.

At each iteration:
1) Find nearest neighbor
2) Find best transformation

a. Point-to-point (closed 
form solution)

b. Point-to-plane (local 
linearization)

Registration



Last Time

Point Cloud -> Triangle mesh

Two step process:

1) Given a point cloud, compute 
a signed distance function
a. Simple projection
b. Poisson-based

2) From the signed distance 
function, obtain a 
triangulation:
a. Marching Cubes



Last Time

Any Questions?

Registration

registered	
point	clouds



Today

• Surface representation via triangle meshes

• Definitions and combinatorial properties

• Mesh simplification

• Mesh subdivision



Setting (1D):
Given a set of pairs of points: approximate the 

function       

Point cloud

{xi, yi}
f s.t. f(xi) = yi 8 i

Motivation: Curve Approximation



Setting (1D):
Given a set of pairs of points: approximate the 

function       

Simplest solution:
• Linear Interpolation: 

{xi, yi}
f s.t. f(xi) = yi 8 i

Motivation: Curve Approximation



Setting (1D):
Given a set of pairs of points: approximate the 

function       

Smooth solution:
• Higher-order Interpolation: degree p polynomial

{xi, yi}
f s.t. f(xi) = yi 8 i

Motivation: Curve Approximation



Setting (1D):
Given a set of pairs of points: approximate the 

function       

Generalized mean-value theorem: If f is a degree p
polynomial, then the approximation error is:

{xi, yi}
f s.t. f(xi) = yi 8 i

Motivation: Curve Approximation

|f(t)� g(t)|  1

(p+ 1)!

max f (p+1)
pY

i=0

(xi � x) = O(hp+1
)



Setting (surfaces in 3D):
High-order approximations to surfaces (e.g. NURBS):

Motivation: NURBS surfaces



Setting (surfaces in 3D):
High-order approximations to surfaces (e.g. NURBS):

Motivation: NURBS surfaces

Defined via a control lattice with control polygons



Motivation: NURBS surfaces
NURBS:

• Inherently continuous
• Intuitive controls (control mesh)
• Limited to grid domains
• A single NURBS patch has the topology of a sheet, cylinder or torus. 

• Must use multiple patches to 
represent complex shapes

• Cracks occur after 
deformations.



[Triangle] Meshes

Surface represented simply as collections of:
Vertices, Edges, and Faces



NURBS vs. Triangle Meshes
Triangle meshes

• Inherently discrete

• No need to have special rules for joining

different patches.

• Can model shapes with arbitrary topology

• Can use adaptive sampling to add 

resolution where necessary

• Allow subdivision for smoothness (today)

• Easy to render



Why Triangle Meshes?

• Provide piece-wise linear approximation 

to the surface

• Error is O(h2)

• Doubling the number of vertices 

reduces the error by 4. 



Why Triangles?

• Simplest piecewise linear element
• Easy to reconstruct from point 

clouds
• Easy to represent

• Quad meshes often used in 
animation

• Typically require some hand-
tuning in reconstruction

• Can provide more flexibility for 
deformation



[Triangle] Meshes



[Triangle] Meshes: 2 main parts

Geometric Structure vs. Combinatorial Structure  



[Triangle] Meshes: 2 main parts

• Geometry: vertex positions

P = {p1, p2, ..., pn}, pi 2 R3

• Connectivity:
• Vertices: 

• Edges:

• Faces: 

V = {v1, v2, ..., vn}

E = {e1, e2, ..., em}, ei 2 V ⇥ V

F = {f1, f2, ..., fk}, fi 2 V ⇥ V ⇥ V



What’s a Valid Triangle Mesh?
Mesh Zoo

Image source: Mirela
Ben-Chen



What’s a Valid Triangle Mesh?

What is a valid connectivity?

Each face is a triangle

Single connected component

Manifold mesh



What’s a Manifold Triangle Mesh?

Manifold triangle mesh:

• Each Edge is adjacent to at most 2 faces:

• Each vertex has a disk-shaped neighborhood

Non-manifold.



Some More Terminology

Boundary edge: adjacent to 
exactly one face

Orientable surface: possible to 
assign a consistent normal 
orientation (e.g. outward)



From now on, a triangle mesh:

Possibly with 
boundaries



Fundamental Combinatorial Relation
Euler-Poincaré identity for polyhedral surfaces

: Euler characteristic

: genus (number of “handles”)

: number of boundary components

� = 2� 2g � b
g

b

V � E + F = � = 2� 2g � b

Genus 0 Genus 1 Genus 2 Genus 3



Fundamental Combinatorial Relation
Euler-Poincaré identity for polyhedral surfaces

V � E + F = � = 2� 2g � b



Euler-Poincaré identity

Proof in the case of planar graphs or convex surfaces:

Euler’s relation for 
planar graphs:

V � E + F = 2

Base case:

(count the exterior face)



Euler-Poincaré identity

Proof in the case of planar graphs or convex surfaces:

V � E + F = 2

invariant: the boundary (exterior) is a simple cycle 
perform the removal according to a shelling order 

Proof by Induction:



Euler-Poincaré identity

Proof in the case of planar graphs or convex surfaces:

V � E + F = 2

Von Staudt’s proof:
Given a planar graph, 
construct any minimum 
spanning tree T.

The dual edges of its 
complement, also form a 
spanning tree. 

The two trees together 
have (V-1)+(F-1) edges. 

E = (V � 1) + (F � 1) ) V � E + F = 2



Euler-Poincaré identity

Proof in the case of planar graphs or convex surfaces:

V � E + F = 2



Some applications of Euler-Poincaré

For a manifold triangle mesh without boundary:

Since each triangle has 3 edges and each edge belongs 
to two triangles:

V � E + F = 2� 2g

2E = 3F

2V � 3F + 2F = 2� 2g )
2V = F + (2� 2g)

For small genus ,  andF ⇡ 2V E ⇡ 3V

Combining with Euler:



Some applications of Euler-Poincaré

For a manifold triangle mesh without boundary:

V � E + F = 2� 2g

For small genus ,  andF ⇡ 2V E ⇡ 3V

Since 
X

i2V
degree(vi) = 2E

avg. degree =
2E

V
⇡ 6

Can distinguish torus, sphere and double torus by average degree.



Some applications of Euler-Poincaré

For a manifold triangle mesh without boundary:

Since each triangle has 3 edges and each edge belongs 
to two triangles:

Combining with Euler:
Number of faces in terms of number of vertices

Average valence of the vertices

Triangulating a sphere with even-degree vertices

V � E + F = 2� 2g

2E = 3F



[Triangle] Meshes – simplification
~600k triangles ~60k triangles

~6k triangles ~600 triangles



[Triangle] Meshes – simplification



Incremental decimation – general framework



Incremental decimation – vertex removal



Incremental decimation – edge contraction



Incremental decimation – half-edge 
contraction



Incremental decimation – edge contraction



Approximating error with quadrics

Simplification based on Quadric Error Metrics 
(Garland and Heckbert, 1997) 
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Approximating error with quadrics

Simplification based on Quadric Error Metrics 
(Garland and Heckbert, 1997) 



Approximating error with quadrics

Simplification based on Quadric Error Metrics 
(Garland and Heckbert, 1997) 



Quadric error simplification: algorithm 

Compute error matrix for each point p.

For each candidate edge pq do

• Minimize: to find the optimal location 
of the intermediate vertex.

• Store the error in a priority queue (heap)

Iterate:
• Pick the edge with the smallest error from the queue
• Collapse the edge and place the new collapsed vertex
• Update the error metrics of adjacent edges 

Qp

�(r) = rT (Qp +Qq) r/2

�(r)



Quadric error simplification: algorithm 
• Implemented in Meshlab1

35k vertices 1http://www.meshlab.net/
ISTI, CNR, Pisa



Quadric error simplification: algorithm 
• Implemented in Meshlab

8.7k vertices



Quadric error simplification: algorithm 
• Implemented in Meshlab

2,1k vertices



Quadric error simplification: algorithm 
• Implemented in Meshlab

560 vertices



Quadric error simplification: algorithm 
• Implemented in Meshlab

280 vertices



Subdivision Surfaces
Provide a trade-off between Smooth and Mesh techniques:

• Inherently continuous
• Intuitive controls (control mesh)
• Can model shapes with arbitrary topology

Modeling Rendering

Subdivision 
surfaces



Subdivision Surfaces
Provide a trade-off between Smooth and Mesh techniques:

• Inherently continuous
• Intuitive controls (control mesh)
• Can model shapes with arbitrary topology

Modeling Rendering

Subdivision 
surfaces



Subdivision Curves
Uniform B-spline of order 2:

Chaikin’s algorithm for Quadratic Uniform B-splines:

j odd: Qj =
3

4

P(j+1)/2 +
1

4

P(j+3)/2

j even: Qj =
1

4

Pj/2 +
3

4

P(j+2)/2

P1

P2

P3
P4

P5 P6

P7

P8

Q
1

Q
2

Q
3



Uniform B-spline of order 2:

Chaikin’s algorithm for Quadratic Uniform B-splines:
Given n points:

Produce 2(n-1) points: Qj , j 2 (1, 2, . . . , 2n� 2)

Pi, i 2 (1, 2, . . . , n)

P1

P2

P3
P4

P5 P6

P7

P8

Q
1

Q
2

Q
3

Subdivision Curves



Subdivision Curves
Uniform B-spline of order 2:

Chaikin’s algorithm for Quadratic Uniform B-splines:
Given n points:

Produce 2(n-1) points: Qj , j 2 (1, 2, . . . , 2n� 2)

Pi, i 2 (1, 2, . . . , n)

P1

P2

P3
P4

P5 P6

P7

P8

Q
1

Q
2

Q
3

Let P = Q and iterate until number of points reaches desired accuracy. 



Subdivision Curves
Uniform B-spline of order 3:

Given n points:

Produce 2(n-1)-1 points:

Pi, i 2 (1, 2, . . . , n)

Qj , j 2 (1, 2, . . . , 2n� 3)

P1

P2

P3

P4

P5 P6

P7

P8



Subdivision Curves
Uniform B-spline of order 3:

Q2i�1 =
1

2
Pi +

1

2
Pi+1

Q2i =
1

8
Pi�1 +

3

4
Pi +

1

8
Pi+1

At each iteration produce 2(n-1)-1 points:

P1

P2

P3

P4

P5 P6

P7

P8
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Subdivision Curves
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Subdivision Curves
Interpolating curves:

In matrix form: for every 4 consecutive old points, produce 2 new points:

P1
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P3

P4

P5 P6

P7

P8
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◆
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P4

1

CCA



Subdivision Curves
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Subdivision Curves
Interpolating curves:

In matrix form: for every 4 consecutive old points, produce 2 new points:
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Subdivision Curves
Interpolating curves:

Note:

P1

P2

P3

P4

P5 P6

P7

P8

Before starting, make a copy of first and last points.
At each iteration, copy the first and last points.



Examples
Chaikin’s scheme



Examples
Chaikin’s scheme

Control
polygon



Examples
Daubechies scheme

Fractal-like



Apply the same ideas to generating smooth surfaces.

General approach:
1. Start with a control Polytope.
2. At each iteration refine the polytope according to some rules.
3. Stop when resolution is high enough.

Subdivision Surfaces



Apply the same ideas to generating smooth surfaces.

General approach:
1. Start with a control Polytope.
2. At each iteration refine the polytope according to some rules.
3. Stop when resolution is high enough.

Subdivision Surfaces



There are topological and geometric changes.

Geometric:
• How the positions of the vertices change

Topological:
• How the connectivity changes

Subdivision Rules



There are topological and geometric changes.

Typically, both geometric and topological changes are local:
New vertices, edges and faces depend on a small 
neighborhood of old ones.

Subdivision Rules



Generalization of Chaikin’s corner cutting to surfaces.

Doo-Sabin subdivision surfaces

At each iteration:
1. Consider the barycenter of every (old) face
2. Construct centroids between the center and old vertices.
3. Connect them in a natural way.
4. Restart.
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Generalization of Chaikin’s corner cutting to surfaces.

At each iteration:
1. Consider the barycenter of every (old) face
2. Construct centroids between the center and old vertices.
3. Connect them in a natural way.
4. Restart.

Doo-Sabin subdivision surfaces



Doo-Sabin subdivision surfaces



Generalization of cubic spline subdivision to surfaces.

Catmull-Clark subdivision surfaces

• Approximating Scheme 
• Small support stencil (just immediate neighbors) 
• Limit surface is 2nd-order continuous except at extraordinary vertices 
• Subdivision scheme used in all modern Pixar films 



Generalization of cubic spline subdivision to surfaces.

Catmull-Clark subdivision surfaces

At each iteration:
1. Construct Face vertices: barycenters of old faces.
2. Construct Edge vertices.
3. Update existing vertices. 
4. Connect them in a natural way.
4. Restart.



Generalization of cubic spline subdivision to surfaces.

Catmull-Clark subdivision surfaces

At each iteration:
1. Construct Face vertices: barycenters of old faces.
2. Construct Edge vertices: average of the old edge vertices and 

the associated face vertices
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Generalization of cubic spline subdivision to surfaces.

Catmull-Clark subdivision surfaces

At each iteration:
1. Construct Face vertices: barycenters of old faces.
2. Construct Edge vertices.
3. Update existing vertices. 
4. Connect them in a natural way.
4. Restart.



Generalization of cubic spline subdivision to surfaces.

Catmull-Clark subdivision surfaces

At each iteration:
1. Construct Face vertices: barycenters of old faces.
2. Construct Edge vertices.
3. Update existing vertices. ej: old vertex incident along edge j

fi: new (orange) vertex on face j
n: number of incident edges. 

vnew
v
old

e1e2

e3

f3 f1

f2

v
new

= v
old

+
1

n2

nX

j=1

(ej � v
old

) +
1

n2

nX

j=1

(fj � v
old

)



Generalization of cubic spline subdivision to surfaces.

Catmull-Clark subdivision surfaces

At each iteration:
1. Construct Face vertices.
2. Construct Edge vertices.
3. Update existing vertices. 
4. Connect them in a natural way.
4. Restart.



Generalization of cubic spline subdivision to surfaces.

Catmull-Clark subdivision surfaces

At each iteration:
1. Construct Face vertices.
2. Construct Edge vertices.
3. Update existing vertices. 
4. Connect them in a natural way.
4. Restart.



Catmull-Clark subdivision surfaces



Triangle-based subdivision:

Loop subdivision surfaces

At each iteration:
1. Construct Edge vertices.
2. Update existing vertices. 
3. Connect them in a natural way.
4. Restart.



Triangle-based subdivision:

Loop subdivision surfaces

At each iteration:
1. Construct Edge vertices.
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Triangle-based subdivision:

Loop subdivision surfaces

At each iteration:
1. Construct Edge vertices.
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Triangle-based subdivision:

Loop subdivision surfaces

At each iteration:
1. Construct Edge vertices.
2. Update existing vertices:

vnewv
old

v
new

= (1� ↵n)v
old

+ ↵
nX

j=1

ej
ej: old vertex incident along edge j
n: number of incident edges. 

↵ =

⇢
3
16 if n = 3
3
8n if n > 3

e1

e2
e3

e4

e5



Triangle-based subdivision:

Loop subdivision surfaces

At each iteration:
1. Construct Edge vertices.
2. Update existing vertices. 
3. Connect them in a natural way.
4. Restart.

Attention: different update rules on the boundary.



Loop subdivision surfaces



Conclusions
Subdivision surfaces:

• Allow simpler modeling 
– Major strength: surfaces of arbitrary topology 
– Limit surfaces are smooth
– Control mesh is typically simple and intuitive

• Adapt to user’s needs
– Render only at required level-of-detail

• Usability
– Compact representation 
– Simple and efficient code 



Extensions
Piecewise-smooth subdivision surfaces:

Allow some sharp edges to remain  

Hoppe et al. Piecewise Smooth Surface Reconstruction, SIGGRAPH ‘94


