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INTRODUCTION

This article summarizes the author’s Robert S. Englemore
Memorial Lecture presented at the Thirty-Fourth AAAI
Conference on Artificial Intelligence on February 10, 2020.
It explores recurring themes in the history of AI, real and
imagined dangers from AI, and the future of the field.
We are now in AI’s third summer, a period of

rapid scientific advances, broad commercialization, and
exuberance—perhaps irrational exuberance—about our
potential to unlock the secrets of general intelligence.
Twice before the field of AI has experienced such a period,
and each was followed by a winter of collapse of com-
mercialization and drastic cuts in government investments
in research. In this essay, I will argue that despite this
cyclical history, enduring insights have blossomed each
summer. The winters can be viewed as times of contem-
plation and integration that advance through the synthe-
sis of new and old ideas. I will also argue that we may
be at the end of the cyclical pattern; although progress
and exuberance will likely slow, there are both scientific
and practical reasons to think a third winter is unlikely to
occur.
In every summer, articles and books about AIwritten for

nonexperts have found wide audiences. I read four recent
books shortly before writing this essay: The Master Algo-
rithm, by Domingos (2015); AI Superpowers, by Lee (2018);
Human Compatible, by Russell (2019); and Rebooting AI,
by Marcus and Davis (2019). This first is an objective his-
tory of machine learning, and like this essay, emphasizes
the continuous evolution of the field. The second charts
the dramatic rise in AI R&D in China and points the way

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. AI Magazine published by Wiley Periodicals LLC on behalf of the Association for the Advancement of Artificial Intelligence

to a utopian future. The third argues that superhuman arti-
ficial intelligence will be an existential risk if the values of
such AIs are not aligned by design with those of humans.
The fourth contends that deep learning, the most pow-
erful approach to machine learning devised to date, will
soon reach inherent limits, and that a different approach
that synthesizes recent and older approaches to AI will be
necessary in the future. This essay will touch on many of
the same elements as these three books. I will first pro-
vide a history of AI; next, discuss near-term dangers of
AI; and finally, describe a number of different technical
approaches for future AI.
If one was to create a cartoon history of AI, the first

panel would show the symbolic approach to AI—pictured,
say, as a cat, beating up on the artificial neural network
approach—let us picture it as Jerry the Mouse. The sec-
ond panel shows both Tom and Jerry shivering in a win-
tery scene; and the third shows Jerry, now grown huge and
powerful through deep learning, easily dispatching Tom
(Figure 1). There is more than a grain of truth in this car-
toonish view of the history of AI from the 1980s through
the present day. The story it presents is incomplete, how-
ever, both in chronology and in failing to illustrate the rich
set of ideas and approaches that developed and entwined
through the history of the field.

THE FIRST AI SUMMER: IRRATIONAL
EXUBERANCE, 1948–1966

William Grey Walter was a polymath in neuroscience and
electronics. As a young man in the 1930s, he built the first

AI Magazine. 2022;43:105–125. wileyonlinelibrary.com/journal/aaai 105

HlaEle284Kautz3rdAISummerAI-Magazine2022

https://orcid.org/0000-0001-5219-2970
mailto:henry.kautz@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/
https://wileyonlinelibrary.com/journal/aaai
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faaai.12036&domain=pdf&date_stamp=2022-03-31


106 AI MAGAZINE

F IGURE 1 Cartoon history of AI picture: (a) Tom (symbolic AI) beating Jerry (neural networks). (b) Spike (deep learning) holding Jerry
and beating Tom

F IGURE 2 Picture of William Grey Walter and his tortoise

electroencephalography (EEG) in the United Kingdom
and discovered that themeasurement of brain waves could
be used to locate brain tumors responsible for epilepsy
(Walter 1953). Thirty years later, a groundbreaking paper
he coauthored in Nature showed that spikes in neural
activity could be used to predictivemotor events a full half-
second before the subject was consciously aware of having
made the decision to move—in other words, that the con-
scious mind only thought it was making decisions (Walter
et al. 1964).
Walter was as much an engineer and tinkerer as a sci-

entist. During WW II, he designed radar systems. The
mechanistic view he took of the brain led him to experi-
ment with artificial neural networks—not just as a math-
ematical abstraction, as in the work of McCulloch and
Pitts (1943), but as the decision-making engine for an
embodied artificial animal (Figure 2). Beginning in 1948,
he built and demonstrated a series of increasingly sophis-
ticated autonomous tortoise-shaped three-wheeled robots
(Hoggett 2011). Their analog electronic brains employed
up to seven vacuum tubes, which interpreted signals from
touch, light, and sound sensors and controlled propulsion

and steering motors. Although their behavior was hard-
wired, the later versions supported a form of conditioned-
reflex learning. A capacitor-based memory could learn to
associate the simultaneous activation of two sensors—for
example, the sound of a whistle and the obstacle detecting
bump sensor. The reflex triggered by the bump sensor—
backing up and turning—could then be triggered by the
sound sensor.

Artificial neural networks

The tortoises’ legacy includes the field of artificial neural
networks, which today dominates research and develop-
ment in artificial intelligence. A few of the well-known
major steps in the development of artificial neural net-
works were the error-based perceptron learning rule of
Rosenblatt (1958), the development of backpropagation for
training multilayer networks (Werbos and Werbos 1974;
Rumelhart, Hinton, and Williams 1986), and parameter
sharing in structured networks, and in particular, convo-
lutional networks (Fukushima 1980; LeCun et al. 1989).
It is easy to see the aspects of artificial neural networks
that Walter got wrong: most obviously, the use of analog
electronics and the focus on stimulus—response learning
rather than error-minimization learning. It is just possi-
ble, however, that Walter was simply wildly premature.
Artificial neural networks are now being compiled into
edge-computing hardware for applications such as video
surveillance; while such hardware is now digital, there is
research on creating analog artificial neural networks that
could operate with a fraction of the energy needed by dig-
ital circuits. Furthermore, one could argue that the tor-
toises’ implementation of stimulus–response learning was
an early attempt at unsupervised learning—which is today
the most important and challenging problem in research
on machine learning.
Artificial neural networks were not the only legacy of

the tortoises. They demonstrated that complex purposeful
behavior arises in the interaction between an agent and
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an environment, an idea that stands in sharp contrast to
the more cerebral symbolic approaches to AI that we will
describe shortly. Walter was part of a larger movement
that aimed to understand animal andmachine intelligence
using feedback loops and other tools of control theory. The
field was given the name “cybernetics” with the publica-
tion of Norbert Weiner’s book of that name (Weiner 1948).
The tortoises were a perfect example of a mechanism reg-
ulated by feedback from their environment. Cybernetics
flourished in the former Soviet Union, but never gained
a foothold in the US AI research community until a syn-
thesis of control theory and dynamic programming (Bell-
man 1957) emerged under the banner of reinforcement
learning (Witten 1977; Sutton and Barto 1981). Even then,
researchers in reinforcement learning were a small minor-
ity in the general AI community for decades. Researchers
made steady progress in developing mathematical frame-
works for training control systems when the feedback sig-
nal was distant in the future. The fact that rewards can be
temporally distant from the agent’s actions distinguishes
reinforcement learning from stimulus–response learning;
indeed, the ability to act for delayed gratification is a key
aspect of intelligence. Temporal-difference learning (Sut-
ton 1988) provided a general approach for implementing
gratification, and proved to be particularly effective when
the agent’s internal state was represented by a neural net-
work.We shall see the potent combination of artificial neu-
ral networks and reinforcement learning reemerge in the
third AI summer.

Knowledge representation

The first AI summer also saw the birth of a very different
approach to building intelligent machines, an approach
whose heritage stretched back thousands of years. This
is the logic-based approach to AI, or more generally and
accurately, the approach based on declarative knowledge
representation.
Symbolic logic grew out of the art of rhetoric in ancient

Greece. Around 350 BC, Aristotle formalized certain kinds
of deductive arguments symbolically in his Prior Analyt-
ics. His key insight—indeed, the insight that is the basis
for not only logic but for the theory of computing—is
that reasoning could be performed by considering only
the syntactic form of statements without considering the
meaning of those statements. After this prescient begin-
ning, however, over 2000 years passed before significant
advances were made in formal logic. George Boole cre-
ated a complete characterization of proposition logic in
1845 (Boole 1854), as Gottlob Frege, Charles Sanders Peirce,
David Hilbert, and others did for quantified logics in the
following decades. This generation of philosophers, how-

ever, had a primary motivation for their work that differed
from that of Aristotle and hismedieval followers: their ulti-
mate goal was to provide a complete and rigorous basis for
mathematics rather than to understand everyday reason-
ing and argumentation. They, therefore, poured enormous
energy into trying to overcome the paradoxes of naive set
theory (Russell 1903) and were devastated by the discovery
that no logic could capture all mathematical truths (Gödel
1931).
The concerns of the researchers who pioneered the log-

ical approach to AI stood in sharp contrast to those of
the philosophers of mathematics. First, the AI researchers
were encouraged by the creation of programs that could
automatically find proofs of some—not necessarily all—
mathematical theorems, and were untroubled by logic’s
inherent incompleteness. The celebrated Logic Theorist
program (Newell and Simon 1956) was able to prove 38
elementary theorems from PrincipiaMathematica (White-
head and Russell 1910–1913). Second, most AI researchers
had little interest in mathematics as a subject matter of
logic. Instead of trying to axiomatize abstruse mathemat-
ics, John McCarthy argued, researchers should strive to
develop logical representations of commonsense knowl-
edge (McCarthy 1958).McCarthy’s original paper described
knowledge about locations (e.g., one can be at a desk, in
a car, etc.) and physical movement (e.g., one might walk
from one location to another nearby location), and his
former student Patrick Hayes called for axiomatization of
commonsense physics (Hayes 1978). Others attempted to
represent the logical rules of human discourse (Allen et al.
1977), thus closing the loop with the ancient Greeks’ view
of logic as a tool for analyzing rhetoric.
Researchers in the first AI summer also began work

on systems that employed graphs rather than the strings
or trees of classical logic to represent knowledge. These
new kinds of representations were called “semantic
networks” and used vertices to represent concepts and
edges to represent relationships. The word “semantic”
came from their initial use as an intralingua for translating
between different natural languages (Richens 1956); they
were intended to capture the meaning, or semantics, of
sentences. Although they were presumably unaware of
it at the time, one researcher has argued that semantic
networks were a rediscovery of the diagrams that ancient
Sanskrit scholars used to analyze texts (Brigs 1985).
Researchers increasingly converged on the view that
semantic networks were simply an alternative notation for
classical logic, as exemplified by Ronald Brachman’s work
on KL-ONE (Brachman and Schmolze 1985). Just as all
practical programming languages were Turing-complete
and thus theoretically equivalent but differed in ease or
naturalness of use, these researchers argued that semantic
networks were simply a more natural form of first-order
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logic where syntax explicitly described concepts in terms
of their attributes and how they generalized or special-
ized other concepts. This version of semantic networks
became known as “description logic.” Pure description
logic, however, proved inadequate for representing large
real-world domains because it could only capture the
absolutely necessary properties of concepts, not those
that were prototypical or that held by default. In recent
years, companies including Google, Facebook, Microsoft
Bing, eBay, and IBM have developed enormous networks
called “knowledge graphs” which they use to drive many
applications, such as web search and product recommen-
dation (Singhal 2012). Despite their scale and ubiquity of
use, many aspects of knowledge graphs remain informal;
for example, in addition to the issue of whether links
represent absolute or prototypical relations, the distance
between concepts in a knowledge graph is often used as a
heuristic measure of concept similarity. Later in this essay,
we will describe a different family of graph-based knowl-
edge representation formalisms called “graphical models”
that combine logic, graph theory, and probability theory.

Heuristic search

The first AI summer’s third research campaign was the
quest for efficient algorithms for combinatorial search. We
now understand that in terms of formal computational
complexity theory, the quest is an impossible dream: the
general task of reasoning in any suitably expressive formal
system is NP-complete or harder (Cook 1971), and thus,
it is believed, requires worst-case exponential time. Even
the problem of STRIPS-style planning—that is, finding
sequences of actions that are defined in terms of precon-
ditions and effects—for the simple “blocks world” domain
is NP-complete (Gupta and Nau 1991). However, the fact
that such complexity results had not yet been discovered
may have helped lead the early AI researchers to an impor-
tant insight: an enormous space of possibilities could be
searched inways that weremore efficient than simple enu-
meration. This insight differentiated AI researchers from
philosophers andmathematicians, for whom the existence
or nonexistence of an algorithm that would terminate after
an exhaustive enumeration of possibilities was the end of
the discussion: this problem was decidable, or that prob-
lem was undecidable. It was obvious to AI researchers
that human reasoning was not a simple enumeration, but
involved shortcuts that made the task feasible given the
time and computational resource limitations of the brain.
Herbert Simon, J. C. Shaw, and Alan Newell discovered
and implemented one such search algorithm, means-ends
analysis, in their General Problem Solver (1959), and later
Newell and Simon argued that humans employed it as well

F IGURE 3 Shakey the robot implemented the STRIPS
planning algorithm (Fikes and Nilsson 1971)

as a variety of other reasoning strategies in their monu-
mental treatise Human Problem Solving (1972).
How can non-enumerative search be practical when the

underlying problem is exponentially hard? The approach
advocated by Simon and Newell is to employ heuristics:
fast algorithms that may fail on some inputs or output sub-
optimal solutions. For example, the means-end planning
heuristic chooses an action, which will reduce the differ-
ence between the initial and goal state; applies the action
initial state; and recursively applied the process to the new
state and the goal state (Figure 3). Although intuitively
appealing, it is not difficult to find problems where the
heuristic fails, stuck in a cycle where it reduces one differ-
ence but introduces another. The A* algorithm (Hart, Nils-
son, and Raphael 1968) provided a general frame for com-
plete and optimal heuristically guided search. A* is used as
a subroutine within practically every AI algorithm today
but is still nomagic bullet; its guarantee of completeness is
bought at the cost of worst-case exponential time.
An interesting class of incomplete heuristic search algo-

rithms is those based on a “noisy” version of iterative
repair, a heuristic similar to means-end analysis. Iterative
repair begins by guessing a solution to the problem. It then
iteratively identifies a flaw in the solution and patches
it, yielding a new proposed solution. As with means-end
analysis, simple iterative repair can easily become stuck
in a cycle. A noisy version of iterative repair reduces the
likelihood of becoming stuck by periodically making ran-
dom changes in the solution; even if most of the random
changes are bad, eventually a change is likely to be intro-
duced that lets the search break out of the cycle. A ver-
sion of noisy iterative repair named “simulated anneal-
ing” was invented by physicists and has proven widely
applicable for optimization problems (Kirkpatrick, Gelatt,
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and Vecchi 1983). Bart Selman and I showed that a simple
version of iterative repair called “local search with noise”
was even more effective for finding satisfying assignments
to logical formulas; the reason for the improvement was
that the random steps were restricted to ones that made
the proposed solution satisfy at least one previously unsat-
isfied problem constraint, even if did the reverse for some
of the other constraints (Selman, Levesque, and Mitchell
1992; Selman, Kautz, and Cohen 19961).
Another way to solve in practice an NP-hard prob-

lem is to employ an algorithm whose empirical complex-
ity on a problem distribution of interest grows subexpo-
nentially or exponentially with a very small exponent.
For example, the best complete algorithm for satisfiabil-
ity testing is backtracking search over the space of par-
tial variable assignments, the Davis–Putnam–Logemann–
Loveland algorithm (DPLL) (Davis et al. 1961), augmented
by a technique called “clause learning” (Marques-Silva and
Sakallah 1996; Bayardo and Schrag 1997). When the back-
tracking algorithm reaches a dead end—that is, when it
determine that the current partial assignment is incon-
sistent - the clause learning module computes a mini-
mal subset of previous assignment choices that led to
the inconsistency and adds the negation of that combina-
tion to the problem as a new clausal constraint. The new
clause prevents those choices from being made in a dif-
ferent branch of the search tree, thus pruning the search.
Although still an exponential algorithm, my colleague
Paul Beame, student Ashish Sabharwal, and I showed
that DPLL with clause learning is probably more power-
ful than DPLL (Beam, Kautz, and Sabharwal 2004). The
algorithm demonstrates remarkably restrained growth in
many real-world problem domains. For example, Pushak
and Hoos (2020) argued that the algorithm on bounded
model-checking problems shows subexponential empiri-
cal scaling.

THE FIRST AIWINTER: CRUSHED
DREAMS, 1967–1977

During the first AI summer, many people thought that
machine intelligence could be achieved in just a few years.
The Defense Advance Research Projects Agency (DARPA)
launched programs to support AI research with the goal
of using AI to solve problems of national security; in par-
ticular, to automate the translation of Russian to English
for intelligence operations and to create autonomous tanks
for the battlefield. Researchers had begun to realize that
achieving AI was going to be much harder than was
supposed a decade earlier, but a combination of hubris
and disingenuousness led many university and think-tank
researchers to accept fundingwith promises of deliverables

that they should have known they could not fulfill. By the
mid-1960s neither useful natural language translation sys-
tems nor autonomous tanks had been created, and a dra-
matic backlash set in. New DARPA leadership canceled
existing AI funding programs. In 1969, the powerful Sen-
ate Majority Leader Mike Mansfield hobbled AI research
funding by all military agencies for decades by pushing
through a law that prohibited military funding of funda-
mental research beyond specific military functions.
Outside of the United States, the most fertile ground

for AI research was the United Kingdom. The AI win-
ter in the United Kingdom was spurred on not so much
by disappointed military leaders as by rival academics
who viewed AI researchers as charlatans and a drain on
research funding. A professor of applied mathematics, Sir
James Lighthill, was commissioned by Parliament to eval-
uate the state of AI research in the nation. The report
stated that all of the problems beingworked on inAIwould
be better handled by researchers from other disciplines—
such as applied mathematics (Lighthill 1973). The report
also claimed that AI successes on toy problems could
never scale to real-world applications due to combinato-
rial explosion. This claim, of course, ignored the quest in
AI for methods to tame combinatorial search as described
above. In response to the report, all public funding of AI
research in the United Kingdom was terminated.

SECOND SUMMER: KNOWLEDGE IS
POWER, 19[67]8–1987

The second AI summer was marked by the field’s change
in focus from commonsense knowledge to expert knowl-
edge. Expert systems, it was believed, would be able to sub-
stitute for trained professionals in medicine, finance, engi-
neering, andmany other fields. An expert—say, a doctor—
would be debriefed by a knowledge engineer, who would
encode the expert’s vast experience into a large set of rules
and facts. A general symbolic reasoning system could then
apply these rules to solve particular problems—for exam-
ple, to create a diagnosis on the basis of a patient’s symp-
toms. The rules could also drive the system to gather fur-
ther information—for example, to order certain blood tests
for the patient in order to refine the diagnosis.
The date for the beginning of the second summer is

written in the section heading using regular-expression
notation to mean that it could be said to have started
in 1968 or to have started in 1978. In 1968, Feigenbaum,
Lederber, and Buchanan (1968) created the first expert sys-
tem, Dendral. It was intended to help organic chemists
in identifying unknown organic molecules by analyzing
their mass spectra and using knowledge of chemistry.
Dendral gained much academic interest and led to the



110 AI MAGAZINE

development of expert systems in other domains, notably
MYCIN (Shortliffe and Buchanan 1975) for bacterial infec-
tion diagnosis and INTERNIST-I, which aimed to capture
the internal medicine expertise of the chair of the depart-
ment of internal medicine at the University of Pittsburgh
(Pople 1976).
It was not until 1978, however, that expert systems

became a hot area of R&D with the creation and commer-
cial deployment of XCON (McDermott 1980). In the 1970s,
buying a computer systemwas a slow and error-prone pro-
cess. Computers were much less standardized than they
are today, and a buyer needed to choose among hundreds
of options when placing an order for one. Options could
interact in complex ways: some combinations of options
could not be physically built or if built would lead to poor
performance; some options required choices from other
options; and so on. The process to order a VAX computer
from Digital Equipment Corporation (DEC) could require
as long as 90 days of back-and-forth between a customer,
sales representatives, andDECengineers to create a correct
system configuration. XCON reduced the time to generate
a satisfactory system configuration for a customer to about
90minutes. The enormous advantage this gave DEC in the
marketplace did not go unnoticed. Soon, companies of all
sorts began developing and deploying expert systems for
a variety of tasks in engineering and sales. Feigenbaum’s
phrase “knowledge is power” became the slogan of the era.
The second AI summer differed from the first in that

it was driven as much by commercial money as by gov-
ernment support. In addition to investments by compa-
nies using expert systems, venture capital flowed into com-
panies creating a software and hardware ecosystem to
support expert systems. Software startups sold expert sys-
tem “shells,” that is, reasoning engines with user inter-
faces intended to make it possible for nonprogrammers
to enter rules. The fact that expert system development
was incremental meant that dynamically linked program-
ming languages were preferred—which in the 1970s and
1980smeant varieties of LISP or Prolog. The relatively slow
performance of these languages with the implementations
and hardware of the era motivated building computer
hardware to directly interpret LISP (by the startup com-
panies Symbolics and LMI) or Prolog (by various Japanese
companies under the auspices of Japan’s Fifth Generation
project).

THE SECOND AIWINTER: THE
DISRESPECTED SCIENCE, 1988–2011

Many reasons can be offered for the arrival of the second
AI winter. The hardware companies failed when much
more cost-effective general Unix workstations from Sun

together with good compilers for LISP and Prolog came
onto the market. Many commercial deployments of expert
systems were discontinued when they proved too costly to
maintain. Medical expert systems never caught on for sev-
eral reasons: the difficulty in keeping them up to date; the
challenge for medical professionals to learn how to use a
bewildering variety of different expert systems for differ-
ent medical conditions; and perhaps most crucially, the
reluctance of doctors to trust a computer-made diagnosis
over their gut instinct, even for specific domains where the
expert systems could outperform an average doctor. Ven-
ture capital money deserted AI practically overnight. The
world AI conference IJCAI hosted an enormous and lav-
ish trade show and thousands of nonacademic attendees
in 1987 in Vancouver; the main AI conference the follow-
ing year, AAAI 1988 in St. Paul, was a small and strictly
academic affair.
Commercial factors aside, enthusiasm for expert sys-

tems cooled because of two central technical chal-
lenges; indeed, overcoming these challenges set the work-
plan for the next two decades of research in AI. The
first challenge was the need for principled and prac-
tical methods for probabilistic reasoning. The logical
rule-based approach excelled at capturing knowledge
about relationships among concepts and entities (such
as class/subclass/instance or object/part/attribute hierar-
chies) but was poorly suited for problems where one
needed to assign probabilities to conclusions. Although the
need to handle uncertainty was recognized by early expert
system researchers, they did not yet know of probabilisti-
cally sound methods of reasoning that were computation-
ally practical; systems such as MYCIN and its descendents
instead attached “certainty factor” numbers to rules and
facts and combined them in an ad hoc manner. The sec-
ond unsolved challenge for the expert system approach
was named the “knowledge acquisition bottleneck.” Cap-
turing all but the narrowest domains required a huge num-
ber of rules. Not onlywas it difficult or impossible to recruit
and train enough experts to write enough rules, but once
the knowledge bases became large they inevitably became
full of inconsistencies and errors.

Probabilistic reasoning

The field of AI did not disappear during the slightly more
than two decades of the second AI winter. It contin-
ued steadily as a relatively small but intellectually vig-
orous research field, freed of the hype and demands for
commercial profit. The challenge of sound but efficient
probabilistic reasoning was first met by what were called
graphical probabilistic models. Bayesian Networks (Pearl
1988) provided a solution to the problem of compactly
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representing multivariable probability distributions with-
out requiring exponentially large probability tables. Each
conditional probability statement was represented by a
set of directed edges that ended at a node together with
a conditional probability table for the variable associated
with the node. The graph has a much stronger mean-
ing, however, than the conditional probability statements
alone: it represents a single probability distribution—the
so-called maximum-entropy distribution—rather than all
distributions that are consistent with the original condi-
tional probability statements. In many problems, one does
indeed want to reason with a maximum-entropy distribu-
tion because it is the one under which our given knowl-
edge captures all interesting relationships between the
variables. The introduction of Bayesian networks led to
fruitful decades of research on extensions to Bayesian net-
works, alternative graphical models, and a variety of new
algorithms for probabilistic reasoning. Heckerman and
Shortliffe (1992) discovered the conditions under which
MYCIN’s certainty factors could be given a probabilistic
interpretation, thus explaining why expert systems some-
times gave sensible answers but at other times did not.
Around the turn of the century, the field of statistical–
relational reasoning arose, which sought to develop rep-
resentations and algorithms that combined the semantics
of graphical models with the expressive ability of the finite
fragment of first-order logic (Friedman et al. 1999; Richard-
son and Domingos 2006).

Machine learning

Overcoming the knowledge acquisition bottleneck led the
field of AI to a renewed focus on machine learning.
For most of the second winter, however, few researchers
returned to the roots of machine learning in artificial
neural networks. Methods were developed for learning
decision trees (Quinlan 1986) and logical rules (Muggle-
ton and Feng 1990). The parameters (conditional proba-
bility tables) for graphical models could be directly esti-
mated fromcomplete data or estimated by the expectation–
maximization algorithm for incomplete data (Dempster,
Laird, and Rubin 1977). Valiant’s (1984) work on proba-
bly approximately correct (PAC) learning showed the lim-
its of learnability for any method relative to the amount
of data that were available. Until the revival of artificial
neural networks in the third summer, the most powerful
approach to “black box” machine learning, that is, that did
not rely upon or attempt to create an interpretable domain
model, was the support vector machine (SVM) pioneered
by Cortes and Vapnik (2004). An unintuitive feature of
SVMs is that they often worked well when highly over-
parameterized—a situation that had been thought to be
necessarily associated with overfitting. Deep learning with

artificial neural networks turned out to share this surpris-
ing feature.
Even as AI research methodology became steadily more

rigorous and many powerful new methods for learning
and reasoning were developed during the second AI win-
ter, disdain of the phrase “artificial intelligence” remained
strong in the commercial world. [Correction added on 26th
April 2022, after first online publication: The word “dis-
tain” was correct to “disdain” in the preceding sentence.]
When AI began to make the leap to large-scale, real-world
applications, companies often went to pains to promote
such systems using terms other than AI. For example,
when IBM wished to leverage the success of its Watson
general question–answering system (Ferrucci et al. 2013),
it invented the phrase “cognitive computing” and used it
exclusively instead of AI until quite recently.

THE THIRD SUMMER: DEEP LEARNING
(201[26] - ?)

As is the case with the Second AI Summer, the start of
the Third Summer can be dated either to when the initial
technical breakthrough occurred or the date when the
rest of the world took note. The technical breakthrough
occurred in 2012. A few years earlier, the computer vision
community had created the ImageNet challenge, a bench-
mark for classifying more than a million images of single
objects across 1000 categories (Russakovsky et al. 2015). A
distributed group of researchers had begun experimenting
with running many-layered artificial neural networks on
graphic processor cards, and entered the competition in
that year. [Correction added on 26th April 2022, after first
online publication: The word “including” was removed
in the preceding sentence.] The ANN model, AlexNet
(Krizhevsky, Sutskever, and Hinton 2012) demolished the
competition of traditional computer vision algorithms,
achieving an error rate of 16% versus 26% by the best
competitor. Within months, most of the computer vision
research community was working onmany-layeredANNs,
and thus the field of what is now called deep learning
(“deep” referring to the many layers of the models)
was born. The year the world at large took AI seriously
again was 2016. That was the year that Google Deep-
Mind AlphaGo defeated the Go grandmaster Lee Sedol
(Figure 4). AlphaGo performed a stochastic variation of
game tree search with a deep neural network to evaluate
leaf positions, where the deep ANN was trained through
self-play (Silver et al. 2016). It would be hard to overstate
the impact that AlphaGo’s victory made in China, or how
widely China’s excitement and subsequent enormous
investments in AI reverberated in governments and
companies throughout the world. The AlphaGo match
has been called China’s “Sputnik Moment” (Lee 2018).
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F IGURE 4 Picture from the Lee Sedol versus AlphaGo match.
Credit: Google DeepMind

The Third Summer reignited the First Summer themes
of artificial neural networks and reinforcement learning.
What other new and lasting insights did it ignite?

Hierarchical representation learning

Many would say the most important advance deep learn-
ing provides is hierarchical representation learning. While
logical knowledge representation was all about capturing
hierarchies, earlier approaches to machine learning con-
sidered only two levels of representation: feature and class.
It was the job of the machine learning scientist to engineer
features that were at the most useful level of abstraction
(Figure 5). The primary motivation for deep learning was
to eliminate the need for manually engineered features;
indeed, one of the premiere conferences on deep learning,
founded by Yann LeCun, is named the “International Con-
ference on Representation Learning.”

Similarity

A second facet of deep learning is less appreciated but
no less a breakthrough for AI: the fact that deep learn-
ing representations directly support concept similarity.
Since everything is a vector of activations, the distance
between vectors—computed by the vector cosine or other
operation—is easily computable. Reasoning about similar-
ity is vital for many (arguably most) real-world domains.
A toy example showing vectors for “cat,” “kitten,” “dog,”
and “house” appears in Figure 6. If the task is to choose a
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F IGURE 5 (a) Diagram of logic-based action hierarchy
containing subclass and substep links from Kautz (1987). (b)
Illustration of representation learning from Lee et al. (2011)

gift for your daughter and she asks for a kitten, then giv-
ing her a cat instead is a reasonable substitute; giving her
a dog is riskier; and giving her a house is not a good idea at
all. More seriously, learning can be viewed as generalizing
from known cases to novel but similar cases.
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F IGURE 6 Illustration of similarity

Similarity is not captured by probability. A dog does not
have some percent chance of being a cat. The only prior
work in AI that had seriously dealt with similarity as dis-
tinct from probability was Lofti Zadah’s Fuzzy Set Theory
(Zadeh 1965).

WHYWINTERMIGHT NOT RETURN

Arewe on the verge of anotherAIWinter?Althoughwe are
still far from what has been called “general artificial intel-
ligence” (AI systems that have the power and flexibility of
the human brain) the kind of AI that today’s technology
can deliver is good enough for solving a huge number of
practical problems ranging from natural language transla-
tion to managing investment portfolios. Current artificial
neural net systems are dramatically different from brains
in scale, organization, and the algorithms they implement
for learning and inference. ANNs also differ from brains in
that they are not generally embodied in a physical organ-
ism, and if neuroscience and psychology have taught us
anything in recent decades, it is that the human mind is
not separate from the human body. How then is it possible
for ANNs to imitate certain aspects of human intelligence
so well?
The first answer Iwould offer to this puzzle is that ANNs

may be capturing general principles for intelligence that
are independent of the particular structure of the human
brain. An analogy may be made with the evolution of
intelligence in the octopus, whose common ancestor with
humans was a worm-like creature that lived 300 million
years ago and had only a rudimentary nervous system

(Vitti 2013). The octopus has a ring-shaped brain with a
lobe at the base of each arm, and lives a life almost totally
alien to that of humans or mammals in general. They are
born in groups of around 50,000 and are not cared for by
their parents; they grow to maturity in about 2 years, and
except for a brief moment ofmating, live solitary lives until
dying of old age at around 5 years. Yet, through a seem-
ing miracle of convergent evolution, they demonstrate
the hallmarks of intelligent behavior, including learning,
planning, and tool use, and according to some people
who have spent much time with them, they can come to
recognize particular humans and interact with them in
the playful manner of one intelligent creature to another
(Ehrlich and Reed 2020). ANNs, like the octopus, may be
an instance of technology-driven convergent evolution of
intelligence.
The second answer I would offer is that true intelli-

gence is often unnecessary because of the unreasonable
predictability of theworld. The Transformermodels of nat-
ural language are essentially statistical models of word co-
occurrence (Devlin et al. 2019). Given a sequence of words,
they estimate the probability distribution over the next
word to occur; they can be applied iteratively to generate
texts by randomly picking the next words according to this
distribution. Who would have dreamed that such statisti-
cal monkeys at typewriters could create long coherent pas-
sages of English as in the famous example from OpenAI’s
GPT-2 language model (Radford et al. 2019).
Prompt: In a shocking finding, scientists discovered a

herd of unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to
the researcherswas the fact that the unicorns spoke perfect
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English. GPT-2: While examining these bizarre creatures,
the scientists discovered that the creatures also spoke some
fairly regular English. Pérez stated, “We can see, for exam-
ple, that they have a common language, something like a
dialect or dialectic.” Dr. Pérez believes that the unicorns
may have originated in Argentina, where the animals were
believed to be descendants of a lost race of peoplewho lived
there before the arrival of humans in those parts of South
America.
Whether my first or second answer is correct—or some

combination or neither!—the fact remains that artificial
intelligence is now good enough to solve practical prob-
lems in a wide variety of domains. At worse, the hype
around AI may diminish, but research and commercial
support will not diminish. A reduction in hype would in
fact be a good force for the field. We might think of it as a
coming time of pleasant summer weather, a relief after the
current heat wave.

AI FOR BAD

Kai-Fu Lee’s book, AI Super-Powers, makes a convinc-
ing case that AI will transform practically every aspect of
life, work, and human relationships. He ends on an opti-
mistic note, envisioning a future where AI handles all the
drudgery of work, and humans are all employed in mean-
ingful jobs that involve close and warm human interac-
tion, such as teachers, caregivers, and artists. Such an opti-
mistic view of the impact of AI is quite widespread in the
AI community. There are a growing number of scientific
workshops and conference tracks on the theme of “AI for
Good,” and the phrase is also the nameof an annualUnited
Nation Global Summit, the name of a Microsoft initiative,
and appears in the mission statement of OpenAI. Rather
than continuing in such a vein, let us instead turn to “AI
for Bad.” In this section, I shall argue that we do indeed
face terrible threats from AI, but these threats are not the
ones most widely discussed in either popular or academic
writing.

Keeping your (face | mind) private

In 2018, Joy Buolamwini and Timnit Gebru observed that
several experimental and commercial face recognition
systems have lower accuracy on darker-skinned faces
than lighter-skinned faces, a finding that was supported in
part by a National Institute of Standards and Technology
evaluation of face recognition systems the following year
(Grother, Ngan, and Hanaoka 2019). This led to popular
outcry against face recognition technology under the
supposition that police would use face recognition to

arrest and convict innocent darker-skinned people (Chi-
noy 2019, Crockford 2020). Laws were passed in various
municipalites, such as San Francisco (Conger, Fausset,
and Kovaleski 2019), against the use of face recognition
software by police and other agencies. The fact that a
trained ML system’s accuracy across subgroups reflects
the relative size of those subgroups in the training data
came as no surprise to experienced researchers. For exam-
ple, face recognition systems developed and trained on
datasets in China are more accurate in recognizing Asian
faces than systems built in the United States. Further,
much of the reporting of the issue oversimplified the
concept of accuracy. In any recognition system, there is
a tradeoff between the false-positive rate and the false-
negative rate that depends upon a threshold parameter.
The NIST study actually showed that depending upon the
choice of threshold, the false match rate for Black faces
could be higher or lower than for White faces (Grother,
Ngan, and Hanaoka 2019, Annex 12: Error tradeoff char-
acteristics with US mugshots, Figure 1). The ban on face
recognition technology in law enforcement is particularly
tragic in light of the fact that mistaken human eye-witness
identification is known to be very high (Albright 2017). To
date, there has been one reported case of an innocent man
being arrested due to an error by face recognition software
(along with the human error in confirming the results of
the identification); the victim spent several hours in a jail
cell before being released (Hill 2020). By comparison, the
Innocence Project has found that mistaken eyewitness
identifications contributed to about 70% of the wrongful
convictions in the United States that were overturned by
postconviction DNA evidence (Innocence Project 2020).
While face recognition is an AI threat that has been

much exaggerated, there is a related real and present
AI-driven threat that cannot be overemphasized. Instead
of concern about keeping our faces private, we should
be much more concerned about keeping our minds
private—this is, our beliefs, preferences, and goals. Using
AI to pry into our minds does not require face recognition,
but only the data exhaust of our mobile phones. In some
of the earliest work on inferring human behavior from
GPS data, my collaborators and I showed that your GPS
trail reveals many of your daily activities, such as visiting
friends, shopping, going to work, and so on (Liao, Fox, and
Kautz 2007); see Figure 7. In 2007, smartphones with GPS
were not yet on the market, so the experiments required
the subjects to carry a GPS recorder. By 2012, GPS on cell
phones was ubiquitous, and posts to Twitter from cell
phones routinely included the user’s GPS coordinates.
Adam Sadilek and I showed that from location data
alone one could infer with high accuracy who were both
friends on Twitter and friends in real life (Sadilek and
Bigham 2012). Since then, of course, user modeling from
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F IGURE 7 Illustration of inference on part of a GPS trace,
which visited this 4 km × 2 km area several times. (a) Activities
estimated for each patch. (b) Places generated by clustering
significant activities, followed by a determination of place types.
From Liao, Fox, and Kautz (2007)

mobile phone data has exploded, fusing data from GPS,
social media posts, purchases, and in certain nations, the
contents of private messages. In the United States, this
technology has been metaphorically weaponized by orga-
nizations that want to win your business, your donations,
or your vote. We have likely all experienced the phenom-
ena whereby we purchase goods whose buyers tend to fall
into a particular place on the political spectrum, and soon
are bombarded with advertisements to give money to a
political party associated with the position.
In China, the weaponization of AI for inferring one’s

beliefs from cell phone data is no metaphor. Millions of
Uyghurs toil in concentration camps because an algorithm
inferred that they were likely to hold traditional religious
and social beliefs and thus be insufficiently loyal to the
central government.2 The hunt for “wrong thinkers” in
totalitarian states certainly does not require the use of AI;
we see it going on today in relatively low-tech fashion in
North Korea, Cuba, and Russia, and historically in East
Germany, the Soviet Union under Stalin, and China dur-
ing the Cultural Revolution. Before the introduction of AI,
however, mind-control required enormous expenditures
by the state. In 1950, East Berlin’s secret police, the Stasi,
employed 2% of the population full-time or 6.5% of the

population if one included part-time informants (Koehler
2008).
AI, however, makes mind surveillance and social con-

trol cheap and scalable. First, far fewer humans need
to be employed in data collection and analysis, as illus-
trated today in Xinjiang (Buckley and Mozur 2019). Sec-
ond, AI allows better targeting of repressive measures. The
imprisonment of a million Uyghurs, a full 10% of that
ethnic group, could not be completely hidden from the
world3 and risked radicalizing ordinary citizens who were
not caught up in the net. This may be, however, the last
time that a nation needs to imprison such a large num-
ber of people to enforce social conformity. All and only
those individuals who are truly likely to be rebellious and
to recruit others to that point of view will need to be
microtargeted. Further, the stick could be combined with
a carrot by identifying and rewarding social influencers
who side with the state. The next time Beijing decides to
clamp down on one of the other fifty-odd ethnic groups
in China, the repressive measures may be subtle enough
to fly under the radar of the rest of the world. More gener-
ally, AI will enable totalitarian states to endure indefinitely
(Minardi 2020).

AI-created fake (news | friends)

Fake news has constantly been in the news since the run-
up to the 2016 presidential election. Fake news spreads
through social media faster than real news (Vosoughi, Roy,
and Aral 2018), and many pundits have claimed that fake
news changes election outcomes.4 When Open AI devel-
oped the statistical language model GPT-2, it announced
that it would not make the model immediately public out
of caution that it could be turned into a fake news genera-
tor by nefarious people (Open.ai 2019).
Fake news is actually much older than 2016—the phe-

nomena goes back to the invention of printing and before.
The so-called “blood libel” is a fake news story that origi-
nated in the 12th century and is still spread by anti-semites
around the world (Soll 2016). In 1898, William Randolph
Hearst’s newspapers promoted the fake story that the US
Battleship Maine had been sunk by Spain; Hearst’s inter-
est was in increasing newspaper sales, but the story also
led to the United States starting the Spanish-Americanwar
(ibid). All of this is to say that people do not need the aid of
AI to write fake news; fake news stories are effective even
when they are implausible and badly written. Fake news is
a social problem, butAI-powered fakenews is not. There is,
however, another application of language models and so-
called deepfake image and video generation (Mirsky and
Lee 2021) that is an existential threat to society: the cre-
ation and monetization of fake friends.
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In a recent survey, 27% of American Millennials (20 and
30 somethings) said that they had no close friends, and 33%
said that they were often or always lonely (Ballard 2019).
What might be called a loneliness pandemic has infected
the younger generation as well. Severe suicide by children
aged 10–14 tripled over the last decade, and clinical depres-
sion doubled (Curtin and Heron 2019); psychologist Jean
Twenge has argued that social-media obsession has dam-
aged young people’s abilities to make interpersonal con-
nections (Twenge 2018).
The 2015 movie She is about a lonely middle-aged man

who falls in love with the intelligent assistant on his cell
phone. The movie is fantasy because She really is an
intelligent—in fact, superintelligent—being. In real life,
many people are ready to relate to the shallow AI agents
that can be created today. Statistical language models are
allowing such agents to become increasingly fluent, and
videos of their faces and bodies generated by adversarial
neural networks have nearly crossed the uncanny valley
(Mori, MacDorman, and Kageki 2012). While such AIs do
not have the capacity to think, feel, or understand, theywill
soon be able to simulate friendship—and with that, simu-
late compassion and love—to a degree that is good enough
to satisfy damaged humans who long for companionship.
Human friendship is hard. Learning the subtle rules of

effect human engagement is the major task a child faces
from birth through adolescence. It requires practice, dis-
appointment, and pain. AI friends—that is, fake friends—
will be attractive to many because they will eliminate this
pain.5 We have argued that there is a growing population
of lonely young people, and that they could be attracted
to but damaged by AI friends. Why, however, should we
fear that such fake friends would ever be made available
to them? The answer is that enormous amounts of money
could bemade by commercializing fake friends. One of the
largest and most profitable companies in the world, Face-
book, says that its mission is to give people the power to
build community (FaceBook 2021), but in fact is an adver-
tising platform. Consider how much more effective adver-
tisements would be if they were spoken to you by your
best friend—not even appearing as formal advertisements,
but simply as the suggestions of your bestie! FaceBook’s
revenue is currently $86 billion (Statistica 2021); can we
doubt that the advertising revenue for fake friends would
not be ten times—or a hundred times—that number? The
cost, of course, is that the person who chooses the fake-
friend route will never develop the skills needed to engage
with other people; they may well become narcissists or
sociopaths.
As with many societal trends, Japan is a bellwether of

the future. The phrase “otaku” refers to adolescent through
middle-aged men who having abandoned hope of finding
a romantic relationship with a real woman call computer-

generated characters their girlfriends (Rani 2013). While it
may simply be sad when adults fixate on fake friends, it
will be terrifying when they are marketed to children. In
theUnited States, themajority of young children have their
own tablets (Kabali, Irigoyen, and Nunez-Davis 2015) and
infants are estimated to start handling mobile devices dur-
ing the first year of life (Rideout 2017). My vision of the end
of humanity is illustrated in Figure 8: the concept of an AI
friend and lover from the movie She; minus superintelli-
gence, because we are nowhere near that; plus an image
from the television show “Blue’s Clues” to illustrate target-
ing children with simulated human interaction.

Weapons of (environmental) mass
destruction

If you have not seen the short video Slaugherbots produced
by Future of Life Institute, you should put down this essay
and go watch it immediately (FoLI 2017). The premise is
that swarms of tiny intelligent drones will soon be released
by unspecified nefarious parties (possibly the organizers
of TED talks) to assassinate people. The video is more
imaginative and entertaining than any number of full-
length robot-apocalypse movies, but it is seriously meant
to convince people to ban the development of autonomous
weapons. In fact, the global campaign against autonomous
weapons, of which Slaughterbots is but a part, did lead
many nations (but not the United States or China) to call
for them to be banned (Human Rights Watch 2020). In
the United States, the Defense Innovation Board’s AI Eth-
ical Guidelines (Defense Innovation Board, 2019) state,
“Human beings should exercise appropriate levels of judg-
ment and remain responsible for the development, deploy-
ment, use, and outcomes of Department of Defense AI
systems.”
What is an “appropriate level of judgment” that human

beings should always exert? To the Future of Life Institute,
the line is clear: an AI algorithm should never make the
decision to kill. In a war, an AI system might identify
potential targets, but the decision to attack a target must
be made by a human. But is this truly the most moral
position to take with regard to autonomous weapons?
Larry Lewis, Senior Advisor for the State Department
on Civilian Protection in the Obama administration,
and Member of the US Delegation for UN Deliberations
on Lethal Autonomous Weapons Systems, has written,
“Artificial intelligence may make weapons systems and
the future of war relatively less risky for civilians than it is
today” (Lewis 2020). In the “fog of war” when split-second
decisions are required, human judgment is often quite
poor; an AI algorithm would be less likely than a human
to misidentify a wedding party as a terrorist group.
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F IGURE 8 She—Bostrom superintelligence + blues clues = = fake friends starting in childhood

Apart from moral considerations, what of the existen-
tial risk of allowing the development of autonomous lethal
drones? Slaughterbots take for granted that there will be
no defenses against murderbots. However, just as missiles
led to the development of antimissile defenses, slaugh-
terbots will lead to the development of antislaughter-
bot defenses—and indeed Israel Aerospace Industries has
announced the sale of dozens of its counter-UAV Drone
Guard systems (Frantzman 2021). It can be further argued
that drones—autonomous or not—are not particularly
effective weapons of war. As I write this in July 2021, the
United States is the process of withdrawing from Afgan-
istan, having conclusively lost the war against the Taliban
despite having launched 13,072 drone strikes since January
2015 (TBoIJ 2021).
The public outcry about AI-poweredweapons in thewar

on terrorism has overshadowed themore deadly and insid-
iousmanner inwhichAIhas superchargednonsustainable
exploitation of natural resources. Rather than resolutions
against AI-powered weapons of mass destruction, it would
be better if the nations of the world united against what we
might call AI-driven weapons of environmental destruc-
tion. We are all too aware of how our oceans have been
devastated by overfishing, garbage dumping, and global
warming. Environmental damage has been hardest in the
upper and middle depths of the ocean. The deepest areas
are a global network of troughs that cut across the ocean
floor, which formed where tectonic plates collided; the
greatest of these is the Mariana trench in the Pacific, a
1500-mile long crescent located 7 miles below the surface.
Aside from some filtration of plastic waste (Morelle 2019),
the Mariana Trench has been unchanged for 180 million
years, and is rich with yet-to-be-classified forms of life. But
all this is about to change.
There is today skyrocketing demand for rare-earth

minerals for batteries, solar cells, and electrics. Many of
the known deposits of minerals such as lithium are either
near exhaustion or are controlled by nations antagonistic
to the United States.6 Geologists have speculated that
the lowest sea flows could contain enormous deposits
of these minerals, and in order to reach their companies
are building enormous robotic excavators that will crawl

F IGURE 9 Images of mining areas for Clarion Clipperton
Zone near Hawaii from Hylton (2020)

along and scape up the ocean floor. The first area where
mining operations are commencing is called the Clarion
Clipperton Zone off the coast of Hawaii (Figure 9). The
Royal Swedish Academy of Sciences has predicted that
each mining ship will release 2 million cubic feet of
discharge every day (Hylton 2020). University of Hawaii
oceanographer Jeff Drazen is quoted in that same article
as saying, “There’s a Belgian team in the CCZ doing a
component test right now. They’re going to drive a vehicle
around on the seafloor and spew a bunch of mud up. So
these things are already happening. We’re about to make
one of the biggest transformations that humans have ever
made to the surface of the planet.We’re going to strip-mine
amassive habitat, and once it’s gone, it isn’t coming back.”
Another scientist, Douglas McClauley from UC Santa
Barbara, is quoted in Halper (2021) as stating, “The ocean
is the place on the planet where we know least about what
species exist and how they function. This is like opening a
Pandora’s box. We’re concerned this won’t do much good
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F IGURE 10 Symbolic Neuro symbolic architecture, from Aylien (2020)

for climate change, but it will do irreversible harm to the
ocean.”
The role of the lowest depths of the sea in earth’s over-

all cycle of life is yet poorly understood. We do not know if
the ecosystems will be resilient to mineral extraction or if
their mining will trigger the collapse of the ecosystem, or
what the effects such a collapse would have on life higher
in the oceans and on land. It will be not a small irony if the
attempt to help stop climate change by shifting to electric
vehicles indirectly causes an even more deadly ecological
disaster, and if the robot army that dooms the earth’s bio-
logical life does not fly in the air or roll on the ground, but
instead toils invisibility at the bottom of the ocean.

PART III: FUTURE OF AI

At last, we come to the crystal-ball gazing section of the
essay: what will be the next big scientific advance in AI?
The recent book by Gary Marcus and Ernie Davis, Reboot-
ing AI (Marcus and Davis 2019), argues that the dom-
inant artificial neural network approach has reached a
plateau because human-level AI requires symbolic reason-
ing. After arguing for a return to research focused on sym-
bolic reasoning that is reminiscent of thatwhich flourished
during the Second AI Summer, they ultimately conclude
that the next advance in AI will actually be a combination
of symbolic and neural net methods.
While the bookmakes it sound like the authors are fight-

ing a lonely battle, they are in fact in violent agreement
with deep learning researchers about the need to under-
stand how to combine neural and symbolic approaches.
A banner inscribed “Neuro-Symbolic Reasoning” could fly
over all of the metaphorical armies of AI. As with so much
of life, however, the devil is in details: what exactly would
be the architecture of such a hybrid AI system? We will
briefly survey six possible designs; for each, I have coined
a name that aims to capture its essence.7
(1) Symbolic Neuro symbolic is currently the deep

learning SOP (standard operating procedure) for natural
language processing (Figure 10). Symbolic input—in the

F IGURE 11 Symbolic[Neuro] architecture

case of language, sequences of words—are each converted
to vectors by word2vec, GloVe, or similar (Mikolov et al.
2013; Pennington, Socher, andManning 2014)—andpassed
to a neural network. The network’s output units convert
the previous layer to a symbolic category or sequence of
symbols via a softmax operation.
(2) The Symbolic[Neuro] architecture employs a Neu-

ral pattern recognition subroutine within a symbolic prob-
lem solver (Figure 11). AlphaGo is a prototypical example
of this design (Silver et al. 2016). The problem solver is the
Monte-Carlo Tree Search algorithm Coulom (2006) and
its heuristic evaluation function is a neural network. Most
robots and autonomous vehicles are Symbolic[Neuro] sys-
tems.
(3) In aNeuro | Symbolic system, a neural network con-

verts nonsymbolic input, such as the pixels of an image,
into a symbolic data structure, which is then processed
by a symbolic reasoning system (Figure 12). In the Neuro-
Symbolic Concept Learner (Mao et al. 2019), the symbolic
reasoning system provides a feedback signal that is used to
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F IGURE 1 2 Neuro | Symbolic architecture, from Mao (Mao et al., 2019)

train the neural network. If you rotate the figure of Neuro |
Symbol 90◦ counterclockwise, you will see that it is similar
to Symbolic[Neuro]; they differ in that the neuro part is a
coroutine rather than a subroutine.
(4) The Neuro: Symbolic→ Neuro approach uses the

SOP architecture but with a special training regime based
on symbolic rules (Figure 13). A remarkable example is
that of Lample and Charton (2020) for performing sym-
bolic mathematics. They trained a transformer sequence
to sequence deep learning system on input–output pairs
of the form (A, B) where the mathematical expression A
can be simplified to the expression B. After training, given
a previously unseen expression, the system could usually
simplify it correctly. Note that the neural network did not
generate a step-by-step derivation; instead, it so thoroughly
absorbed its lessons that it could simply guess the correct
answer.
(5) A Neuro_{Symbolic} architecture transforms sym-

bolic rules into templates for structures within the neu-
ral network (Figure 14). Tensor product representations
(Smolensky et al. 2016) and logic tensor networks (Serafini,
Donadello, and Garcez 2017) have been demonstrated for
building abstraction and part-of hierarchies into the net-
work. To the best of my knowledge, the approach has not
been explored for encoding disjunctive rules that would
enable combinatorial reasoning by cases.
(6) We finally come to the approach to neuro-symbolic

reasoning that I believe has the greatest potential to com-
bine the strengths of logic-based and neural-based AI,
namely the Neuro[Symbolic] architecture (Figure 15).
The basic idea is to embed a symbolic reasoning engine
inside a neural engine, with the goal of enabling super-
neuro and combinatorial reasoning. The architecture is
based on Daniel Kahneman’s theory of “thinking fast and
slow” (2011), which states that the brain implements two
distinctmechanisms for reasoning. System 1 operates auto-
matically and quickly, with little or no effort and no sense
of voluntary control, and is based on similarity. For exam-
ple, you see a man frowning and conclude that he is angry,
because his expression is similar to the expression on the
faces of people you have seen in the past who were angry.
The conclusion may be wrong—for instance, he may be
frowning because of a problem with his dentures—but the

F IGURE 13 Symbolic→ Neuro architecture

system works well enough for 99% of everyday reason-
ing. System 2, by contrast, allocates attention to the effort-
ful mental activities. You consciously and often painfully
work your way through a tree of choices and imagined out-
comes. People make errors during System 2 reasoning not
because the underlying rules of thought are unsound but
because the human brain is so poorly designed to do it. We
overlook possible choices and miscalculate probabilities.
We are almost sure to become lost if more than a dozen
or so reasoning steps are required.
The properties of System 1 and System 2 are remarkably

similar to those of the artificial neural net approach to AI
and the logical approach to AI. Note that even when one
is executing System 2, System 1 is ultimately in charge; it is
System 1 that decides when to initiate System 2. The name
Neuro[Symbolic] is chosen to indicate that the symbolic
subsystem is a subroutine of the main neural system. A
natural instantiation of the architecture is a reinforcement
learning agent that includes in its set of actions one to start
System 2 executing. It might also have actions that moni-
tor time and computational resource usage by System2 and
terminate it when its resource use is excessive.
How does System 1 send a description of the problem

to be solved to System 2, and how does System 2 return
its answer to System 1? Since System 2 works on symbolic
structures, System 1 must generate an internal symbolic
representation of the task. In Rethinking Consciousness,
the psychologist Graziano (2019) hypothesizes that there
is a cognitive mechanism named the Attention Schema8
with which the brain generates a symbolic representation
of what is it thinking about. The System 1 action to initi-
ate System 2 must therefore first fill the Attention Schema
with a symbolic representation of the task at hand. Gen-
erating such an internal symbolic structure might use the
same kind of artificial neural net structures that are used
to generate sentences in natural languagemodels. The out-
put of the symbolic reasoning subsystem could be fed back
into the neural network just as natural language is input to



120 AI MAGAZINE

F IGURE 14 Neuro_{Symbolic} architecture, from Serafina et al. Serafini, Donadello, and Garcez 2017

a deep learning system; in other words, as a “little voice in
the head.” An alternative feedback mechanism would be
for the output of System 2 to modify the preceptive field of
System 1, as illustrated in Figure 14. The architecture can be
generalized to includemany different specialized symbolic
reasoning subsystems, such as A* state-space search, con-
straint satisfaction, numeric and symbolic mathematics,
and first-order theorem proving. Such subsystems can be
vastly more powerful than human System 2 reasoning. For
example, Heule, Kullmann, and Marek (2016) used a ver-
sion of the DPLL Boolean satisfiability algorithm to solve a
Pythagorean Triples Problem that required a 200 terabyte
proof. No human could create such a proof.
Yoshi Bengio and collaborators (Madan et al. 2021) have

proposed a related architecture called recurrent indepen-
dent mechanisms that includes an Attention Schema-
like module that contains a reduced vector representa-
tion of the ANN’s state rather than a fully symbolic
representation. We do not yet know, however, how even
reduced vector representations could support fast com-
binatorial search. A possible objection to our proposed
Neuro[Symbolic] architecture is that the symbolic solver
would not in general be differentiable, so it would not sup-
port gradient-descent-based learning of the System 1 part
of the system. System 1 could still be trained, however,
on input/output pairs from the symbolic solver, as is done
in Neuro: Symbolic → Neuro. Over time, System 1 could
become better and better at predicting solutions to prob-
lem, and thus learn to invoke System 2 less frequently. This

matches our intuition about howwe learn subjects such as
arithmetic. We begin by laboriously calculating even sim-
ple sums, but eventually learn to solve at least two-digit
arithmetic problems reflectively. Another criticism of the
Neuro[Symbolic] approach we outlined is that it is limited
to logical reasoning or problems that can be reduced to
logical reasoning. There is no fundamental reason, how-
ever, that it could not be extended to probabilistic reason-
ing. For example, the Attention Schema could be instan-
tiated with Bayesian network where System 2 engine is
a probabilistic reasoning engine. However, similarity rea-
soning, as opposed to probabilistic reasoning, would need
to remain within System 1. Finally, an entirely valid criti-
cism of Neuro[Symbolic] is that while inspired by models
of cognition, it certainly does not model the brain at what
Marr called the implementation level (Marr 1982) andmay
even differ at the algorithmic level. For example, it seems
implausible that when solving a logic problem we actually
performDPLL searchwith clause learning, as doesHeule’s
system (ibid). This is not a problem if our ultimate goal is
not to understand human intelligence but to create AI sys-
tems that can solve the countless problems in science, engi-
neering, and commerce that are beyond human abilities.

SUMMARY: THE STATE OF AI

The history of AI is not the cartoon version with which
we began this essay. Each AI Summer has led to lasting
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F IGURE 15 Neuro[Symbolic] architecture illustrated by a mouse-maze domain. The System 1 agent sees and recognizes a maze beyond
which lies cheese, which causes it to choose the action of invoking a System 2 symbolic reasoning system—in this case, a shortest-path
algorithm. A shortest path algorithm is a specific case of combinatorial search. As part of making the choice, it instantiates a grid-world
version of the map in its Attention Schema. In this example, the search algorithm records its solution by making annotations to the Attention
Schema: marks on the grid that show the path. The System 1 agent has learned how to interpret the marks to help guide it to the cheese

insights. Each AI Winter was caused by backlash against
unfulfilled promises - unfulfilled because the methods of
the time ran into technical roadblocks. Science continued
on quietly during the winters, finding ways around the
roadblocks and devising complete approaches and algo-
rithms. The current AI summer is again a timewhenmany
exaggerated promises are being made, but this time the
ratio of real-world results to hype is much higher than
before. For all the wild claims that we are nearing Gen-
eral AI or the singularity—few actually made by serious
researchers—as a whole the field of AI today is positively
modest compared to the hype surrounding, for example,
blockchain or quantum computing.9
AI can be used to drive powerful applications for good

or for evil. Most of the world’s efforts to constrain bad
uses of AI are, in my opinion, misguided. They focus
on improbable problems while ignoring the ways that AI
is most likely to damage society, human development,
and the earth itself. Remarkable real-world accomplish-
ments have been made. For example, while I was fin-
ishing this essay, Google announced what might well be
the most important practical result in the history of AI:
the success of AlphaFold in predicting the 3D shape of
proteins (Senior et al. 2020). Many scientists believe that
the next set of scientific advances will come through the
integration of neural and symbolic approaches to AI—
but we do not yet know what form that integration will
have.

Federal funding for fundamental research in AI has
been flat for most of the past 20 years, but has recently
begun to increase. In 2020, the National Science Founda-
tion together with industry and federal agency partners
funded the first cohort of National Artificial Intelligence
Research Institutes, which are designed to support long-
term fundamental research, promote the application of AI
to problems of national importance, and grow and diver-
sify the next generation of AI scientists and engineers. At
the time of writing this essay (August 2021), Congress is
considering greatly enlarging the nation’s investment in
AI and other technologies of the future. Although this call
for increasing investment is partly driven by rivalry with
China, we can at least hope that the competitionwill result
in broad benefits to society by creating general AI technol-
ogy thatwill be used to improve our health, our livelihoods,
and our global environment. We hope that the AI race will
be similar in its impacts to the space race rather than the
nuclear arms race.

ACKNOWLEDGMENTS
I thank AAAI for the Engelmore Memorial Award Lec-
ture that led me to write this paper; the many researchers
whose discoveries inspired it; and the National Science
Foundation for providing time for me to write it as part
of my Independent Research and Development Program
(IR/D) while I served at the agency. Any opinion, findings,
and conclusions or recommendations expressed in this



122 AI MAGAZINE

material are those of the author and donot reflect the views
of the National Science Foundation.

CONFL ICT OF INTEREST
No conflict of interest has been declared by the author(s).

ORCID
HenryA.Kautz https://orcid.org/0000-0001-5219-2970

ENDNOTES
1An interesting historic note is the BramCohenwho appears as coau-
thor on the paper that introduced theWalksat algorithm is the same
Bram Cohen who went on to invent Bittorent.

2At the time I first delivered the lecture on which this essay is based
in January 2020, news of the camps in Xinjiang had only recently
appeared in theUSmainstreammedia, andmany still claimed itwas
all just anti-Chinese propaganda. This was also just before COVID-
19 exploded in the United States, and government officials on both
sides of the Pacific Ocean were claiming that the disease wasmostly
contained and would fizzle out in a few weeks, so I made the trip to
deliver the lecture in person in New York City. I worried that my
comments in this section would turn out to be exaggerated, but had
no worries about making the trip; in retrospect my concerns should
have been exactly the reverse of what they were.

3Althoughwhen the Disney corporation filmed the remake ofMulan
in Xinjiang Province, by strange change their cameras never hap-
pened to capture the concentration camps.

4However, a study of voters’ online media consumption leading up
to the 2016 election of Donald Trump by Guess, Nyhan, and Reifler
(2020) found that “these (fake news)websitesmade up a small share
of people’s information diets on average andwere largely consumed
by a subset of Americans with strong preferences for proattitudi-
nal information. These results suggest that the widespread specu-
lation about the prevalence of exposure to untrustworthy websites
has been overstated.”

5This is one of the themes of the recent novel Klara and the Sun
(Ishiguro 2021).

6For example, the largest reserve of lithium on landmay be in Afgan-
istan (Horowitz 2021).

7This is only one possible taxonomy of neuro-symbolic system; see
Garcez and Lamb (2020) for another.

8Graziano’s Attention Schema is not to be confused with the concept
of attention in deep learning. The latter refers to various algorithms
that have been proposed for combining the vector representations
of sequential data points.

9This is not to disparage the theory of quantum computing, which
is revealing astonishing facts about the relationship between com-
puting and quantum physics. The problem is that much of the hype
about the practical impact of quantum computing is coming from
scientists who should know better (Aaronson 2021). The parallels
with the hype that came from “inside the house” during the first
two AI summers is striking.
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