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Image matching and recognition with local features

The goal: establish correspondence between two or more
Images
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X : 4-vector
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C C /
Image points x and x’ are in correspondence if they are
projections of the same 3D scene point X.

Images courtesy A. Zisserman



Example |: Wide baseline matching and 3D reconstruction

Establish correspondence between two (or more) images.

[Schaffalitzky and Zisserman ECCV 2002]



Example |: Wide baseline matching and 3D reconstruction
Establish correspondence between two (or more) images.

X

[Schaffalitzky and Zisserman ECCV 2002]



[Agarwal, Snavely, Simon, Seitz, Szeliski, ICCV'09] —
Building Rome in a Day

57,845 downloaded images, 11,868 registered images. This video: 4,619 images.




3D reconstruction — capturing reality



Example Il: Object recognition

Establish correspondence between the target image and
(multiple) images in the model database.

Model
database F

[D. Lowe, 1999]



Example lll: Visual search

Given a query image, find images depicting the same place /
object in a large unordered image collection.

Find these landmarks ...In these images and 1M more



Establish correspondence between the query image and all
images from the database depicting the same object / scene.
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Mobile visual search -
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Example

e

@/ http://www.amazon.co...

Vision Science: Photons to

Phenomenology (Hardcover)
Stephen £. Palmer
TR (5)

Larger Image

$88.00 $83.35
Ships from and sold by Amazon.com
flialhla fnr FRFF Suner Saver Shipping

Slide credit: I. Laptev



Visual navigation for autonomous robotics

http://mrg.robots.ox.ac.uk/theme/localisation/



Why is it difficult?

Want to establish correspondence despite possibly large
changes in scale, viewpoint, lighting and partial occlusion

e A e

Lighting Occlusion

... and the image collection can be very large (e.g. 1M images)



Approach

0. Pre-processing:
« Detect local features.
« Extract descriptor for each feature.

1. Matching: Establish tentative (putative) correspondences
based on local appearance of individual features (their
descriptors).

2. Verification: Verify matches based on semi-local / global
geometric relations.

3. Learnable representations for visual correspondence



Outline: feature detection

Edges

Blobs =2 (===
Contours < *“_\7

. e _ S
Regions

Contours/lines
Image regions [Felzenszwalb et al., 2014] Mi-points, angles



Why extract features?

* Motivation: panorama stitching
 We have two images — how do we combine them?

Slide: S. Lazebnik



Why extract features?

* Motivation: panorama stitching
 We have two images — how do we combine them?

Step 1: extract features
Step 2: match features

Slide: S. Lazebnik



Why extract features?

* Motivation: panorama stitching
 We have two images — how do we combine them?

Step 1: extract features
Step 2: match features
Step 3: align images

Slide: S. Lazebnik



Characteristics of good features

Repeatability
 The same feature can be found in several images despite geometric
and photometric transformations

Saliency
 Each feature is distinctive

Compactness and efficiency
 Many fewer features than image pixels

Locality

» A feature occupies a relatively small area of the image; robust to
clutter and occlusion

Slide: S. Lazebnik



A hard feature matching problem

NASA Mars Rover images

Slide: S. Lazebnik



Answer below (look for tiny colored squares...)

NASA Mars Rover images
with SIFT feature matches

Figure by Noah Snavely

Slide: S. Lazebnik



Blob detection
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Slide: S. Lazebnik



Feature detection with scale selection

We want to extract features with characteristic
scale that is covariant with the image
transformation
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Slide: S. Lazebnik



Blob detection: basic idea

To detect blobs, convolve the image with a
“blob filter” at multiple scales and look for
maxima of filter response in the resulting
scale space
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Slide: S. Lazebnik



Images as functions

Source: S. Seitz



Blob filter

Laplacian of Gaussian: Circularly symmetric
operator for blob detection in 2D

Slide: S. Lazebnik



Recall: Edge detection

Sigma =50
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Edge detection, Take 2
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From edges to blobs

« Edge =ripple
» Blob = superposition of two ripples

maximum

Spatial selection: the magnitude of the Laplacian
response will achieve a maximum at the center of
the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob

Slide: S. Lazebnik



Scale-space blob detector: Example

Slide: S. Lazebnik



Scale-space blob detector: Example

sigma = 11.9912

Slide: S. Lazebnik



Scale-space blob detector

1. Convolve image with scale-normalized
Laplacian at several scales

2. Find maxima of squared Laplacian response
In scale-space

.....
____________

................

Slide: S. Lazebnik



Scale-space blob detector: Example

Slide: S. Lazebnik



SIFT descriptors

4x4 spatial grid, 8 bins for gradient orientation
— dimension 128

image patch gradient 3D histogram
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David G. Lowe. "Distinctive image features from scale-invariant
keypoints.” I[JCV 60 (2), pp. 91-110, 2004.

Slide: S. Lazebnik


http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Affine adaptation

» Affine transformation approximates viewpoint
changes for roughly planar objects and
roughly orthographic cameras

Slide: S. Lazebnik






Approach

0. Pre-processing:
« Detect local features.
« Extract descriptor for each feature.

1. Matching: Establish tentative (putative) correspondences
based on local appearance of individual features (their
descriptors).

2. Verification: Verify matches based on semi-local / global
geometric relations.




Example |I: Two images -"Where is the Graffiti?”




Step 1. Establish tentative correspondence

Establish tentative correspondences between object model image and target
image by nearest neighbour matching on SIFT vectors

@
————————————————— i _—_—_——--~~~-
/S 0/ S S0 )/
Model (query) image 128D descriptor Target image
space

128
X] - R X; € R128

Need to solve some variant of the “nearest neighbor problem” for all feature vectors,
X; € R28 in the query image:

Vi NN(j) = arg mz.in [1x; — x|,

where, X; € 'R128 , are features in the target image.

Can take a long time if many target images are considered.



Step 1. Establish tentative correspondence

Examine the distance to the 2" nearest neighbour [Lowe, |JCV 2004]

Ambiguous
\ oo
______________ PR
POt Unique ¢ Tl
/S 0 /S / /S o0/
Model (query) image 128D descriptor Target image
128 Space 128
X; €ER X; €ER

If the 2" nearest neighbour is much further than the 15! nearest neighbour
Match is more “unique” or discriminative.

Measure this by the ratio: r = dyyn / donn

ris between 0 and 1
r is small the match is more unique.

Works very well in practice.



Problem with matching on local descriptors alone

» too much individual invariance
 each region can affine deform independently (by different amounts)

* locally appearance can be ambiguous

Solution: use semi-local and global spatial relations to verify matches.



Example |I: Two images -"Where is the Graffiti?”

Initial matches

Nearest-neighbor
search based on
appearance descriptors
alone.

After spatial
verification




Approach

0. Pre-processing:
« Detect local features.
« Extract descriptor for each feature.

1. Matching: Establish tentative (putative) correspondences
based on local appearance of individual features (their
descriptors).

2. Verification: Verify matches based on semi-local / global
geometric relations.




Step 2: Spatial verification (now)

a. Semi-local constraints
Constraints on spatially close-by matches

b. Global geometric relations

Require a consistent global relationship between all
matches



Semi-local constraints: Example |. — neighbourhood consensus

Ly

a database entry and a match
its p closest features

Fig. 4. Semi-local constraints : neighbours of the point have to match
and angles have to correspond. Note that not all neighbours have
to be matched correctly.

[Schmid&Mohr, PAMI 1997]



Semi-local constraints:

Example |. —
neighbourhood
consensus

[Schaffalitzky &
Zisserman, CIVR
2004]

After neighbourhood consensus



Geometric verification with global constraints

* All matches must be consistent with a global geometric
relation / transformation.

* Need to simultaneously (i) estimate the geometric
relation / transformation and (ii) the set of consistent
matches

Matches consistent with an affine
transformation

Tentative matches



Examples of global constraints

1 view and known 3D model.
« Consistency with a (known) 3D model.

2 Views
* Epipolar constraint )
« 2D transformations
 Similarity transformation =
- Affine transformation = ﬁ
* Projective transformation = Q
N-views | i
Are images consistent with a 3D model? A \ L
g . -EW



3D constraint: example

« Matches must be consistent with a 3D model

Offline: Build a 3D model

3 (out of 20) images ‘
used to build the 3D ‘
»
B

model
(a) Recovered 3D model

[Lazebnik, Rothganger, Schmid, Ponce, CVPR'03]



3D constraint: example

« Matches must be consistent with a 3D model

Offline: Build a 3D model

3 (out of 20) images
used to build the 3D
model

At test time:

Object recognized in a previously Recovered pose

unseen pose ()

[Lazebnik, Rothganger, Schmid, Ponce, CVPR’03]



3D constraint: example

Given 3D model (set of known 3D points X's) and a set of
measured 2D image points X,

find camera matrix P and a set of geometrically consistent
correspondences X<~X.

X = PX

P : 3 x4 matrix
X : 4-vector

X . 3-vector



2D transformation models

Similarity
(translation,
scale, rotation)

Affine

=)

- ¥

Projective
(homography)

~

Why are 2D planar transformations important?



Recall perspective projection

X = PX

P : 3 x4 matrix
X : 4-vector

X . 3-vector

Slide credit: A. Zisserman



Plane projective transformations

Choose the world coordinate system such that
the plane of the points has zero z coordinate.
Then the 3 x 4 matrix P reduces to

Ty [ P11 P12 P13 P14 | y P11 P12 P1a | [ X
T2 | = | P21 P22 P23 P24 o | = | P21 P22 P24 y
T3 | P31 P32 P33 P34 |\ 4 | P31 P32 p3a |\ 1

which is a 3 x 3 matrix representing a general
plane to plane projective transformation.

Slide credit: A. Zisserman



Projective transformations continued

i i A
9 hi1 hiz hi3 1
x5 | = | ho1 hoo hos T2

| h31 h32 hzz | \ z3

or x' = Hx, where H is a 3 x 3 non-singular [ * 7
homogeneous matrix. : x =

 This is the most general transformation between the world
and image plane under imaging by a perspective camera.

* It is often only the 3 x 3 form of the matrix that is important in
establishing properties of this transformation.

* A projective transformation is also called a ""homography"
and a " collineation".

* H has 8 degrees of freedom. How many points are needed to
compute H?

Slide credit: A. Zisserman



Planes in the scene induce homographies




Planes in the scene induce homographies

Points on the plane transform as x’ = H x, where x and x’
are image points (in homogeneous coordinates), and H
IS a 3x3 matrix.
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Case ll: Cameras rotating about their centre

"N,

image plane 2—— X

image plane 1 >

o X,
oX,
* The two image planes are related by a homography H

* H depends only on the relation between the image
planes and camera centre, C, not on the 3D structure

~” .

” e



Case |I: Example of a rotating camera

Images courtesy of A. Zisserman.



Homography is often approximated well by 2D
affine geometric transformation

i,




Homography is often approximated well by 2D
affine geometric transformation — Example Il.

Two images with similar camera viewpoint

4&‘
Sty

'.-r”r—:_‘_, X
Y rm—
““1”“:"— HE
IAIESE L0

Matches consistent with an affine
transformation

Tentative matches



Example: estimating 2D affine transformation

« Simple fitting procedure (linear least squares)

« Approximates viewpoint changes for roughly planar
objects and roughly orthographic cameras

« Can be used to initialize fitting for more complex models




Example: estimating 2D affine transformation

« Simple fitting procedure (linear least squares)

« Approximates viewpoint changes for roughly planar
objects and roughly orthographic cameras

« Can be used to initialize fitting for more complex models




Fitting an affine transformation

Assume we know the correspondences, how do we get the
transformation?
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Fitting an affine transformation

x, y. 0 0 1 0Of|my| [x;
0 0 x, y, 0 1|\m,| |y

l

Linear system with six unknowns

Each match gives us two linearly independent
equations: need at least three to solve for the

transformation parameters



Dealing with outliers

The set of putative matches may contain a high percentage
(e.g. 90%) of outliers

How do we fit a geometric transformation to a small subset
of all possible matches?




Example: restricted affine transform

1. Test each correspondence




Example: restricted affine transform

2. Compute a (restricted) planar affine transformation (5 dof)

Need just one correspondence



Example: restricted affine transform

3. Score by number of consistent matches

Re-estimate full affine transformation (6 dof)



Example Il: Similarity transformation

Similarity transformation is specified by four parameters:
scale factor s, rotation 8, and translations t, and t,.

! T t
= sR(0 + |,” =

Recall, each SIFT detection has: position (x;, y;), scale s,
and orientation 6.

How many correspondences are needed to compute
similarity transformation?



RANSAC (references)

M. Fischler and R. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting
with Applications to Image Analysis and Automated Cartography,” Comm. ACM, 1981

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2"9 ed., 2004.

Extensions:

B. Tordoff and D. Murray, “Guided Sampling and Consensus for Motion Estimation,
ECCV’03

D. Nister, “Preemptive RANSAC for Live Structure and Motion Estimation, ICCV’03

Chum, O.; Matas, J. and Obdrzalek, S.: Enhancing RANSAC by Generalized Model
Optimization, ACCV’'04

Chum, O.; and Matas, J.: Matching with PROSAC - Progressive Sample Consensus ,
CVPR 2005

Philbin, J., Chum, O., Isard, M., Sivic, J. and Zisserman, A.: Object retrieval with large
vocabularies and fast spatial matching, CVPR’07

Chum, O. and Matas. J.: Optimal Randomized RANSAC, PAMI’08
Lebeda, Matas, Chum: Fixing the locally optimized RANSAC, BMVC’12 (code available).



Geometric verification for visual search (references)

Schmid and Mohr, Local gray-value invariants for image retrieval, PAMI 1997

Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large
vocabularies and fast spatial matching. CVPR (2007)

Perdoch, M., Chum, O., Matas, J.: Efficient representation of local geometry for large
scale object retrieval. CVPR (2009)

Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate web
image search. In: CVPR (2009)

Jegou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image
search. IJCV 87(3), 316-336 (2010)

Lin, Z., Brandt, J.: A local bag-of-features model for large-scale object retrieval. ECCV
2010)

Zhang, Y., Jia, Z., Chen, T.: Image retrieval with geometry preserving visual phrases. In:
CVPR (2011)

Tolias, G., Avrithis, Y.: Speeded-up, relaxed spatial matching. In: ICCV (2011)

Shen, X., Lin, Z., Brandt, J., Avidan, S., Wu, Y.: Object retrieval and localization with
spatially-constrained similarity measure and k-nn re-ranking. In: CVPR. IEEE (2012)

H. Stewénius, S. Gunderson, J. Pilet. Size matters: exhaustive geometric verification for
image retrieval, ECCV 2012.



Summary

Finding correspondences in images is useful for
* Image matching, panorama stitching

« Object recognition
» Large scale image search: next time

Beyond local point matching
« Semi-local relations

» Global geometric relations:

« Epipolar constraint x 'Fx =0
- 3D constraint (when 3D model is available) |X = PX
« 2D tnfs: Similarity / Affine / Homography x/ — Hx
» Algorithms:
« RANSAC

« [Hough transform]



Convolutional neural networks for correspondence
and instance-level recognition

Still an active area of research with some successes.

Instance level matching and retrieval:

Babenko et al., ECCV 2014

Razavian et al., ArXiv 2014

Azizpour et al., ArXiv 2014

Babenko and Lempitsky, ICCV 2015

Gong et al., ECCV 2014

Altwaijry et al., CVPR 2015

Arandjelovic et al., CVPR 2016.

Radenovic and Chum, ECCV 2016.

A Gordo, J Almazan, J Revaud, D Larlus, ECCV 2016.

Patch descriptors and correspondence:

Verdie, Kwank, Fua and Lepetit, CVPR 2015

Fischer, A Dosovitskiy and T Brox, Arxiv, 2015

Simo-Serra, Trulls, Ferraz, Kokkinos, Fua, and Moreno-Noguer, CVPR 2015
Han, Leung, Jia, Sukthankar, and C Berg, CVPR 2015

Zagoruyko and Komodakis, CVPR 2015

Gwak, Savarese and Chandraker, ECCV 2016

KM Yi, E Trulls, V Lepetit, P Fua, ECCV 2016

Balntas, Johns, Tang, and Mikolajczyk, CVPR 2016

A Mishchuk, D Mishkin, F Radenovic, J Matas, NIPS 2017

Dense correspondence for motion estimation
Fischer, Dosovitskiy, llg, Hausser, Hazirbas, Golkov, van der Smagt, Cremers and Brox, ICCV 2015
T Zhou, M Brown, N Snavely, DG Lowe, CVPR 2017
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Learnable representations for
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Challenges

Substantial appearance differences



Challenges

Presence of background clutter



Challenges

Lack of large annotated image pair dataset



Applications

Co-segmentation

[Taniai et al. '16]



Applications

Co-segmentation

[Taniai et al. '16]



Applications

Medical image registration

[de Vos et al. “17, Rohé et al. "17]



Applications

Visual localization in indoor environments

[Taira et al., CVPR 2018]




Applications

Visual localization across changing conditions

[Sattler et al., CVPR 2018]
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Related work

Philbin et al’07 Aubry et al’14

[Lamdan et al. 90, Leung et al.’95, Schmid and Mohr’97, Lowe’99, Fergus et al.’03, Berg and Malik’05, Philbin
et al’07, Liu et al/08, Kim et al.’”13, Revaud et al.’13, ...]
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Convolutional neural network architecture
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Classical image correspondence pipeline

Iy~ Feature extraction £y
- Transf. ~
Matching - fap ~| estimation |~ ¢
Iz~ Feature extraction > 1,
1. Feature extraction 2. Matching 3. Transformation
(SIFT) (Euclidean dist.+2"d NN test) estimation

(RANSAC)
[Schmid and Mohr’97, Lowe’99, Berg’05, Philbin et al.’07, Liu et al.’08, Kim et al.’13, Revaud et al."13, ...]



Classical image correspondence pipeline

Feature extraction

Feature extraction

A

T fa

> /B

Matching

Transf.
estimation

0: geometric transformation parameters
(affine: 6-D vector)



Proposed approach

Feature extraction CNN

|
v

Feature extraction CNN

Ja

> /B

Matching

classical pipeline - CNN

Regression
CNN




Proposed approach




Proposed approach

Feature extraction CNN

|
b

Feature extraction CNN




Proposed approach

Feature extraction CNN

|
b

Feature extraction CNN




Proposed approach

fa /B

Feature extraction CNN

w X h xd w X h X d

T fa

|
b

Feature extraction CNN

> /B

w X h grids of d-dim features



Proposed approach

fa /B

w X h xd w X h xd
- raorman -,
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fa

w X h xXd

Proposed approach

/B
w X h X d

Matching

»fAB



Proposed approach

\
fa /B
w X h X d w X h xXd

similar to [Weinzaepfel et al.’13, Fischer et al '15]

CAB

w X h X (w x h)

Y,

correlation

A

L2

norm.

W
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Proposed approach

/B
w X h X d
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CAB

w X h X (w x h)
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Proposed approach

| L2

,lci norm.

»fAB




Proposed approach

L2

> 7 k norm.9 »fAB

Output consists of similarity scores isolating the feature information



Proposed approach

| L2

,lci norm.
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Proposed approach




Proposed approach




Proposed approach
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Proposed approach




Proposed approach




Proposed approach
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Proposed approach




Proposed approach

L2

norm.

I: all matches between f5(i.7) and all the f4



Proposed approach

L2

norm.

»fAB

Ideally: a single good match along I



Proposed approach

L2

norm.

»fAB

In practice: ambiguous matches along I



[Lowe’99]

Proposed approach

Correlation
map

Normalized
correlation map




Proposed approach

Correlation
map

Normalized
correlation map




> fap >

Proposed approach

Regression
CNN

—

A

- Affine: D=6
- Thin-plate spline: D=18

fas : Scores for all possible feature pairs



Proposed approach

Aligned
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Coarse to fine architecture

Feature Extraction

Feature Extraction

Matching

Affine Regression =

Warp

J

Affine transformation estimation

—
»

Coarse
alignment




Coarse to fine architecture

Feature Extraction

N

Matching ]T Affine Regression 6,

Qe

W
= - 0

alignment
Thin-plate spline transformation estimation

S=a

Feature Extraction -




Training

Annotating correspondences at a large scale is difficult



Training

Modelgemibedicaliytgartbratad gaparsontent

Tokyo StreetView images from [Arandjelovic et al. ‘15]



Training loss

GT transf. O

warped
image pair -

B é _>£(é~ OGT)

|
Z ”75(-'17%'? yi) - %GT(:I:iﬁ yz)”%

(J.‘,' .y.—)e(.'

Insight: The loss computes
a pixel distance and can be used
with any type of differentiable
geometric transformation



Results on PF

Source



Results on PF

Source



Results on PF

Source



Results on PF

Source




Results on PF

Source Target



Results on PF

Methods PCK (%)
DeepFlow [43] 20
GMK [15] 27
SIFT Flow [27] 38
DSP [21] 29
Proposal Flow NAM [23] 53
Proposal Flow PHM [27] 55
Proposal Flow LOM [273] 56
RANSAC with our features (affine) 47
Ours (affine) 49
Ours (affine + thin-plate spline) 56

Ours (affine ensemble + thin-plate spline) 57




Do we need global geometric model?

-
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Global 2D affine transformation Semi-local constraints
: ) : [Ferrari et al’05, Schaffalitzky and
[Hz.;\rt.ley&Z|ss’erman 04, Lazebnik et al.03, Zisserman’02, Schmid and Mohr’97, Sivic
Philbin et al./17, ... ] and Zisserman’03, Zhang et al.’95, Bian et

al’17, ...]



Neighborhood consensus networks

// Ya
% /‘ N Soft mutual Soft mutual
[—‘4 : nearest neighbour nearest nesghbour
R (" J) fnltcnng hltenng
......q--"""‘é' """""""""""""" g """"""
(k l # (t ; k l) I A Ct]kl aD mtered
f B %. J: matches
40D space of feature 4D correlation Neughbourhood
Dense CNN

matches map Consensus
features Network

[Rocco et al., NIPS 2018]



Neighborhood consensus networks
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Results:
PF-Pascal dataset

Method PCK (oo = 0.1)
HOG+PF-LOM [8] 62.5
SCNet-AG+ [9] 72.2
CNNGeo [20] 71.9
WeakAlign [21] 75.8

NC-Net 78.9




Results:
Indoor localization

Plug into localization pipeline of
[Taira et al., CVPR’18]

Distance SparsePE DensePE DensePE InLoc  InLoc

(m)  [31] [31] +NC-Net [31] + NC-Net
025 213 353 34.7 38.9 41.0
0.50  30.7 47.4 50.8 56.5 59.0
1.00  42.6 57.1 60.2 69.9 71.4

200 47.1 61.1 64.7 74.2 77.8




Visual
localization
indoors

[Taira et al., CVPR 2018]




Evaluation

0 InLoc dataset

- 10K DB images, 23,000m?
- 329 test images with

reference poses

Correctly localized queries [%]

o0
-

4 N
- -

(|
-

0

InLoc (ours)

Dense verification

Dense matching

- —

Dense representation

Sparse feature baseline
[Arandjelovi¢ ACCV 2014]
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Distance threshold [meters]



Example: Visual localization in changing
conditions

[Sattler et al., CVPR 2018]
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Query ActiveSearch DenseVLAD  NetVLAD FAB-MAP LocalSfM  DenseStM

125.67, 54.19 2 : 1.00, 2.70 3.75, 2.10

What is the right representation for visual localization and navigation?
- changing conditions, outdoor/indoor, generalization to new environments.



Next challenge : Embodied computer vision

Problems: | Textured
1. Can we localize large-scale 3D Mesh
changing environments?

2. Can we learn to navigate in
never seen before places?

3. How can we transfer these
capabilities to a real robot?

4. How to learn to communicate
with people about visually grounded
concepts (spaces, directions,
objects)?

5. Can we learn these capabilities
without direction input/output
supervision?

Panoramas Object Instances

Image from: https://matterport.com/blog/2017/09/20/announcing-matterport3d-research-dataset/



