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Short Review of CNNs

2



What are CNNs?

• CNNs are neural networks popular for image processing.

• Convolution captures patterns like edges or textures to help 

models understand visual structures.

• CNNs are suitable to learn hierarchical patterns in images—

in order to solve visual recognition tasks.
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Why We Use CNNs?

• They are easy to implement and deploy in production. 

• They can solve very complex problems suprisingly well.

• We use them for all big tasks:

Classification, Detection, Segmentation, Regression
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Tasks Suitable for CNNs

Classification

Is this a cat image?

Detection

Where are the cats?

Segmentation

What pixels are cat?

Regression

How many cats?
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What is the Limitation?

• CNNs can solve very complex problems.

• But only if we have data that is excellent in both quality and 

quantity.

• We use data (observations) instead of prior knowledge –

blackbox vs. whitebox issue.
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How CNNs Work?

• Convolution filters can quantify patterns.

• We create a complex structure (model) consisting of convolution 

filters.

• We search for optimal filter parameters to make the model 

working.
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Feature Maps

We can generate multiple feature maps and refine them using

subsequent 1×1 convolutions to reduce dimensionality or enhance

specific features. But what to do with them?
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Pooling

• We exchange spatial resolutions for feature descriptors

(channels).

• These channels can actually contain the information we need!
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Pooling and Convolutions – Example Architecture
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Modular Design
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What Do We Actually Need?

Different outputs shapes for similar images:

• Detection – we do not how many objects are there

• Segmentation – output is feature map

• Classification – number of classes can change

We would like to avoid costly training if possible.
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What We Know

• Deep CNN layers are hard to train.

• Good CNN architectures can work over multiple domains.

How to recycle the CNNs for different tasks?
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Modular Design Pattern

Backbone – General pretrained CNN

Neck – Specific features highlighter

Head – Task-specific predictor
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Backbone

• A stack of convolutional layers (usually deep) responsible for 

generic feature extraction from input data (e.g., edges, textures, 

shapes).

• Can be pretrained on large datasets.

• Outputs feature maps with spatial and semantic information.
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Head

• The final layers responsible for producing the task-specific output.

• Examples:

o Fully connected layers for classification.

o Bounding box regressors

o Mask predictors for segmentation.
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Neck

• Intermediate layers that process and refine the features from the 

backbone.

• Highlight or fuse features that are relevant to the specific task.

• Examples: attention modules and bottlenecks
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Popular Backbones
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Purely Sequential Backbones

• Layers are stacked one after another

• Use simple, uniform blocks, e.g., 3×3 conv + 2×2 pooling.

• Easy to understand and implement.

• VGG family are classic examples, built only from conv and pooling 

layers.

• Limited depth — training deep models is hard without residuals.

19



VGG Based Networks (2014+)

• VGG-11 – 8 conv layers + 3 fully connected layers

• VGG-13 – 10 conv layers + 3 fully connected layers

• VGG-16 – 13 conv layers + 3 fully connected layers (most popular)

• VGG-19 – 16 conv layers + 3 fully connected layers (deepest)

These networks are often used without the fully connected layers, 

serving purely as a feature extraction backbone.
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Inception (2014)

Pooling stride = 1

It does not reduce the dimensions.
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Inception Based Networks

• GoogLeNet / Inception v1 (2014)

• Inception v2 (2015)

• Inception v3 (2015)

• Inception v4 (2016) - Utilizing residual connections
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Residual Connections
(2015)

• Solves vanishing gradients in very deep networks.

• Output is y=F(x)+x (skip connection).

• Improves training stability and gradient flow.

• Introduced in ResNet (2015), enabling >100-layer networks.
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Bottleneck

• Three-layer block: 1×1 → 3×3 → 1×1

• Middle layer has reduced channels

(¼ of original).

• Cuts computational cost while 

keeping depth.

• Enables very deep networks without 

huge FLOPs.
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Few Notable ResNets

• ResNet-18 / ResNet-34 – lightweight models for smaller tasks.

• ResNet-50 – common backbone using bottleneck blocks.

• ResNet-101 / ResNet-152 – deeper models for high-accuracy tasks.

• ResNeXt-50 / ResNeXt-101 – adds cardinality (grouped 

convolutions).
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DenseNet (2016)

• In a DenseNet block, each layer receives inputs from all 

previous layers

• Instead of adding features like in ResNet, DenseNet

concatenates them, preserving all earlier features.

• Strong accuracy with less computation.
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Popular DenseNets

• DenseNet-121: 121 total layers, mobile-friendly applications.

• DenseNet-169

• DenseNet-201

• DenseNet-264: Largest standard version
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Classification and Regression 
Heads
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Common Head Design

• Feature maps are reshaped before prediction, often using GAP or 

flattening.

• A Multi-Layer Perceptron (MLP) is applied to the resulting vector for 

classification or regression.

• Softmax is commonly used on the output for classification tasks.

• Regression heads usually have a linear output.
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Backbone and Head Example
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Backbone Output Reshaping

• Global Average Pooling (GAP):

o For each channel, computes the average value across all 

spatial positions. Example: 7×7×512 → 1×1×512 → 512

• Flattening:

o Takes the entire feature map (H × W × C) and flattens it into 

one long vector. Example: 7×7×512 → 25,088 
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Softmax Output Activation

Raw model output (logits): [2.0, 1.0, 0.1]

1. Step: exponentiate → [e², e¹, e⁰·¹] = [7.39, 2.72, 1.11]

2. Step: normalize → [7.39/11.22, 2.72/11.22, 1.11/11.22] ≈ 

[0.66, 0.24, 0.10]

Interpretation → Class 1: 66%, Class 2: 24%, Class 3: 10%

32



Detection Heads
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Detection Head Design

• It predicts object class and bounding box coordinates.

• Often operate on multiple spatial locations to detect several 

objects.

• Can be single-stage (direct predictions) or two-stage (region 

proposals first).

• Use multi-scale features to handle objects of different sizes.
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Simple Detection Taxonomy

1. Two-Stage Detectors (High Accuracy)

2. One-Stage Detectors (High Speed)

3. Modern Trends (Transformers and other complex models)
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Two-Stage Detectors

• First stage: generate region proposals where objects may be 

located.

• Second stage: classify each proposal and refine its bounding box.

• Typically achieve higher accuracy, especially for small objects.

• Slower than one-stage detectors due to two-step processing.
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Popular Two-Stage Detectors

• R-CNN (2014)

• Fast R-CNN (2015): Shared backbone for proposals, much faster 

than R-CNN.

• Faster R-CNN (2015)

• Mask R-CNN (2017)

(Note: R-CNN → Region-based Convolutional Neural Network)
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R-CNN (2014) – Not end-to-end

Three separate steps:

• Generate region proposals (e.g., Selective Search).

• Run a CNN on each region to extract features.

• Train SVM classifiers and bounding box regressors separately.

• Very slow and complex pipeline.
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Fast R-CNN (2015) – Partially end-to-end

• Uses a shared backbone CNN for the whole image → faster feature 

extraction.

• Still relies on external region proposals (Selective Search).

• Classification and bounding box regression are trained together, but 

region proposal step is not learned.
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Faster R-CNN (2015) – Fully end-to-end

• Introduces Region Proposal Network (RPN) that learns to 

generate proposals.

• Entire pipeline — backbone, RPN, classification, and box regression 

— is trained jointly.

• First truly end-to-end two-stage detector.
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Popular One-Stage Detectors

• YOLO (2016) – "You Only Look Once," real-time object detection.

• SSD (2016) – "Single Shot Detector," popular for balanced speed 

and accuracy.

• YOLOv3/v4/v5+ – Successive YOLO improvements for accuracy 

and efficiency.
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The Concept of Grid and Anchors
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Grid and Anchors

• Multiple anchors per grid cell, with multiple grid scales per 

image.

• Total number of detections is limited by the number of anchors.

• Filtering step to keep only valid detections:

o YOLO: objectness score, SSD: background class.

• Non-Maximum Suppression (NMS) to remove duplicates.
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YOLO: Objectnes Score

• Additional output describing how likely the box is contain object.

44



SSD: Background class

• One extra class for background.
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Detection Summary

• Generate candidate boxes across the image.

• Refine boxes and classify potential objects.

• Filter and keep meaningful detections.
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Segmentation Models
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Segmentation Models

• Predict a class label for each pixel instead of a single class for the 

whole image.

• Often use an encoder–decoder structure.

• Common outputs are per-pixel probability maps processed with 

softmax or sigmoid.
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Segmentation

• Semantic segmentation assigns class to each pixel.

• Instance segmentation separates individual object instances.
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Segmentation Example – Steel Billet

One class – one pixel-wise classification map:

50



Segmentation Example - Apples
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Segmentation Example - Apples
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Segmentation Example - Apples
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Encoder

• Acts like a backbone, using convolution and pooling to gradually 

reduce spatial resolution.

• The encoder is often built on a popular backbone (e.g., VGG, 

ResNet) to leverage pretrained feature extraction.

• Captures high-level semantic features while losing fine details.
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Decoder 

• Upsamples low-resolution feature maps back to the original 

image size.

• Uses transposed convolutions, bilinear upsampling, or 

unpooling.

• Often combines encoder features via skip connections to recover 

spatial detail and sharp boundaries.
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U-Net Architecture
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Few Popular Segmentation Models

• FCN (Fully Convolutional Network, 2015): First end-to-end 

trainable semantic segmentation network.

• U-Net (2015): Encoder-decoder with skip connections, popular in 

medical imaging.

• Mask R-CNN (2017): Extends Faster R-CNN for instance 

segmentation.
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Segmentation Output

• Segmentation models output pixel-wise classification maps.

• Each map corresponds to a specific class.

• Output maps can be the same size as the input or smaller

(upsampled later).

• The maps are often processed with softmax across channels to 

produce per-pixel class probabilities.
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Similarity and Clustering 
Heads
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Similarity Measure (Siamese Network Style)

Shared backbone, one head.
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Image Encoding with Backbone

Codes can be used for storage, clustering, etc.
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Necks and Attention
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Neck

• Purpose: Refine, fuse, and reweight features from the backbone.

• Key benefit: Improves detection, segmentation, and other tasks, 

especially for objects at different scales.
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Popular Necks

• Feature Pyramid Networks (FPN)

• PANet (Path Aggregation Network)

• BiFPN (Bidirectional FPN)

• SE blocks (Squeeze-and-Excitation): channel-wise attention.

• CBAM (Convolutional Block Attention Module): spatial + 

channel attention.
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FPN with Backbone
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BiFPN
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Squeeze and Excitation Block

• Weight for every channel is 

calculated with fully connected (FC) 

block.

• Channels are re-weighted (scaled 

according to the SE Block output.
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Spatial Attention

• Both average and max pooling is 

used (two channels)

• Highlights the important regions
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Convolutional Block Attention Module (CBAM)

• CBAM = Channel Attention (like SE) + Spatial Attention

• CBAM is useful because it helps a CNN learn what and 

where to focus — without adding much computational cost.

• Introduced in 2018
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Practical Tips
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How to Choose the Architecture

1. Understand your task

2. Choose backbone

3. Create the head

4. Add attention mechanisms if necesarry
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Do you need spatial resolution (decoder)?

72

Classification

Is this a cat image?

Detection

Where are the cats?

Segmentation

What pixels are cat?

Regression

How many cats?



Choose a Backbone

• Dataset size?

• Size of the features?

• Computational capacity?

• Problem complexity?

• Image resolution?
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Backbone Suggestions

• Small dataset - ResNet

• Small features - Modify ResNet, or use VGG

• Computational restrictions – MobileNet

Note: Use pretrained backbone whenever possible.
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Build Your Head

• Use MLP head or CNN decoder

• Use more complex head if you have enough data

• Shape the output properly for your task (size and activation 

function)
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Add Attention Mechanisms

Attention mechanisms can simplify the tasks for the head:

• Highlighting the most salient spatial regions

• Emphasizing the most informative feature channels

• Preserving fine details that might otherwise be lost
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Conclusion
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Final Points

• CNNs are composed of backbones, necks, and heads.

• Major developments occurred between 2012 and 2018, 

establishing the foundations of modern CNNs.

• New architectures are largely extensions and refinements of core 

ideas, focusing on efficiency, multi-scale feature handling, and 

attention mechanisms.
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