
Convolution Neural Networks
Common Architectures

CTU, FS, U12110

Ing. Matouš Cejnek, Ph.D.



Short Review of CNNs

2



What are CNNs?

• CNNs are neural networks popular for image processing.

• Convolution captures patterns like edges or textures to help 

models understand visual structures.

• CNNs are suitable to learn hierarchical patterns in images—

in order to solve visual recognition tasks.

3



Why We Use CNNs?

• They are easy to implement and deploy in production. 

• They can solve very complex problems suprisingly well.

• We use them for all big tasks:

Classification, Detection, Segmentation, Regression

4



Tasks Suitable for CNNs

Classification

Is this a cat image?

Detection

Where are the cats?

Segmentation

What pixels are cat?

Regression

How many cats?

5



What is the Limitation?

• CNNs can solve very complex problems.

• But only if we have data that is excellent in both quality and 

quantity.

• We use data (observations) instead of prior knowledge –

blackbox vs. whitebox issue.

6



How CNNs Work?

• Convolution filters can quantify patterns.

• We create a complex structure (model) consisting of convolution 

filters.

• We search for optimal filter parameters to make the model 

working.

7



Feature Maps

We can generate multiple feature maps and refine them using

subsequent 1×1 convolutions to reduce dimensionality or enhance

specific features. But what to do with them?

8



Pooling

• We exchange spatial resolutions for feature descriptors

(channels).

• These channels can actually contain the information we need!

9



Pooling and Convolutions – Example Architecture

10



Modular Design

11



What Do We Actually Need?

Different outputs shapes for similar images:

• Detection – we do not how many objects are there

• Segmentation – output is feature map

• Classification – number of classes can change

We would like to avoid costly training if possible.

12



What We Know

• Deep CNN layers are hard to train.

• Good CNN architectures can work over multiple domains.

How to recycle the CNNs for different tasks?

13



Modular Design Pattern

Backbone – General pretrained CNN

Neck – Specific features highlighter

Head – Task-specific predictor

14



Backbone

• A stack of convolutional layers (usually deep) responsible for 

generic feature extraction from input data (e.g., edges, textures, 

shapes).

• Can be pretrained on large datasets.

• Outputs feature maps with spatial and semantic information.

15



Head

• The final layers responsible for producing the task-specific output.

• Examples:

o Fully connected layers for classification.

o Bounding box regressors

o Mask predictors for segmentation.

16



Neck

• Intermediate layers that process and refine the features from the 

backbone.

• Highlight or fuse features that are relevant to the specific task.

• Examples: attention modules and bottlenecks

17



Popular Backbones

18



Purely Sequential Backbones

• Layers are stacked one after another

• Use simple, uniform blocks, e.g., 3×3 conv + 2×2 pooling.

• Easy to understand and implement.

• VGG family are classic examples, built only from conv and pooling 

layers.

• Limited depth — training deep models is hard without residuals.

19



VGG Based Networks (2014+)

• VGG-11 – 8 conv layers + 3 fully connected layers

• VGG-13 – 10 conv layers + 3 fully connected layers

• VGG-16 – 13 conv layers + 3 fully connected layers (most popular)

• VGG-19 – 16 conv layers + 3 fully connected layers (deepest)

These networks are often used without the fully connected layers, 

serving purely as a feature extraction backbone.

20



Inception (2014)

Pooling stride = 1

It does not reduce the dimensions.

21



Inception Based Networks

• GoogLeNet / Inception v1 (2014)

• Inception v2 (2015)

• Inception v3 (2015)

• Inception v4 (2016) - Utilizing residual connections

22



Residual Connections
(2015)

• Solves vanishing gradients in very deep networks.

• Output is y=F(x)+x (skip connection).

• Improves training stability and gradient flow.

• Introduced in ResNet (2015), enabling >100-layer networks.

23



Bottleneck

• Three-layer block: 1×1 → 3×3 → 1×1

• Middle layer has reduced channels

(¼ of original).

• Cuts computational cost while 

keeping depth.

• Enables very deep networks without 

huge FLOPs.

24



Few Notable ResNets

• ResNet-18 / ResNet-34 – lightweight models for smaller tasks.

• ResNet-50 – common backbone using bottleneck blocks.

• ResNet-101 / ResNet-152 – deeper models for high-accuracy tasks.

• ResNeXt-50 / ResNeXt-101 – adds cardinality (grouped 

convolutions).

25



DenseNet (2016)

• In a DenseNet block, each layer receives inputs from all 

previous layers

• Instead of adding features like in ResNet, DenseNet

concatenates them, preserving all earlier features.

• Strong accuracy with less computation.

26



Popular DenseNets

• DenseNet-121: 121 total layers, mobile-friendly applications.

• DenseNet-169

• DenseNet-201

• DenseNet-264: Largest standard version

27



Classification and Regression 
Heads

28



Common Head Design

• Feature maps are reshaped before prediction, often using GAP or 

flattening.

• A Multi-Layer Perceptron (MLP) is applied to the resulting vector for 

classification or regression.

• Softmax is commonly used on the output for classification tasks.

• Regression heads usually have a linear output.

29



Backbone and Head Example

30



Backbone Output Reshaping

• Global Average Pooling (GAP):

o For each channel, computes the average value across all 

spatial positions. Example: 7×7×512 → 1×1×512 → 512

• Flattening:

o Takes the entire feature map (H × W × C) and flattens it into 

one long vector. Example: 7×7×512 → 25,088 

31



Softmax Output Activation

Raw model output (logits): [2.0, 1.0, 0.1]

1. Step: exponentiate → [e², e¹, e⁰·¹] = [7.39, 2.72, 1.11]

2. Step: normalize → [7.39/11.22, 2.72/11.22, 1.11/11.22] ≈ 

[0.66, 0.24, 0.10]

Interpretation → Class 1: 66%, Class 2: 24%, Class 3: 10%

32



Detection Heads

33



Detection Head Design

• It predicts object class and bounding box coordinates.

• Often operate on multiple spatial locations to detect several 

objects.

• Can be single-stage (direct predictions) or two-stage (region 

proposals first).

• Use multi-scale features to handle objects of different sizes.

34



Simple Detection Taxonomy

1. Two-Stage Detectors (High Accuracy)

2. One-Stage Detectors (High Speed)

3. Modern Trends (Transformers and other complex models)

35



Two-Stage Detectors

• First stage: generate region proposals where objects may be 

located.

• Second stage: classify each proposal and refine its bounding box.

• Typically achieve higher accuracy, especially for small objects.

• Slower than one-stage detectors due to two-step processing.

36



Popular Two-Stage Detectors

• R-CNN (2014)

• Fast R-CNN (2015): Shared backbone for proposals, much faster 

than R-CNN.

• Faster R-CNN (2015)

• Mask R-CNN (2017)

(Note: R-CNN → Region-based Convolutional Neural Network)

37



R-CNN (2014) – Not end-to-end

Three separate steps:

• Generate region proposals (e.g., Selective Search).

• Run a CNN on each region to extract features.

• Train SVM classifiers and bounding box regressors separately.

• Very slow and complex pipeline.

38



Fast R-CNN (2015) – Partially end-to-end

• Uses a shared backbone CNN for the whole image → faster feature 

extraction.

• Still relies on external region proposals (Selective Search).

• Classification and bounding box regression are trained together, but 

region proposal step is not learned.

39



Faster R-CNN (2015) – Fully end-to-end

• Introduces Region Proposal Network (RPN) that learns to 

generate proposals.

• Entire pipeline — backbone, RPN, classification, and box regression 

— is trained jointly.

• First truly end-to-end two-stage detector.

40



Popular One-Stage Detectors

• YOLO (2016) – "You Only Look Once," real-time object detection.

• SSD (2016) – "Single Shot Detector," popular for balanced speed 

and accuracy.

• YOLOv3/v4/v5+ – Successive YOLO improvements for accuracy 

and efficiency.

41



The Concept of Grid and Anchors

42



Grid and Anchors

• Multiple anchors per grid cell, with multiple grid scales per 

image.

• Total number of detections is limited by the number of anchors.

• Filtering step to keep only valid detections:

o YOLO: objectness score, SSD: background class.

• Non-Maximum Suppression (NMS) to remove duplicates.

43



YOLO: Objectnes Score

• Additional output describing how likely the box is contain object.

44



SSD: Background class

• One extra class for background.

45



Detection Summary

• Generate candidate boxes across the image.

• Refine boxes and classify potential objects.

• Filter and keep meaningful detections.

46



Segmentation Models

47



Segmentation Models

• Predict a class label for each pixel instead of a single class for the 

whole image.

• Often use an encoder–decoder structure.

• Common outputs are per-pixel probability maps processed with 

softmax or sigmoid.

48



Segmentation

• Semantic segmentation assigns class to each pixel.

• Instance segmentation separates individual object instances.

49



Segmentation Example – Steel Billet

One class – one pixel-wise classification map:

50



Segmentation Example - Apples

51



Segmentation Example - Apples

52



Segmentation Example - Apples

53



Encoder

• Acts like a backbone, using convolution and pooling to gradually 

reduce spatial resolution.

• The encoder is often built on a popular backbone (e.g., VGG, 

ResNet) to leverage pretrained feature extraction.

• Captures high-level semantic features while losing fine details.

54



Decoder 

• Upsamples low-resolution feature maps back to the original 

image size.

• Uses transposed convolutions, bilinear upsampling, or 

unpooling.

• Often combines encoder features via skip connections to recover 

spatial detail and sharp boundaries.

55



U-Net Architecture
56



Few Popular Segmentation Models

• FCN (Fully Convolutional Network, 2015): First end-to-end 

trainable semantic segmentation network.

• U-Net (2015): Encoder-decoder with skip connections, popular in 

medical imaging.

• Mask R-CNN (2017): Extends Faster R-CNN for instance 

segmentation.

57



Segmentation Output

• Segmentation models output pixel-wise classification maps.

• Each map corresponds to a specific class.

• Output maps can be the same size as the input or smaller

(upsampled later).

• The maps are often processed with softmax across channels to 

produce per-pixel class probabilities.

58



Similarity and Clustering 
Heads

59



Similarity Measure (Siamese Network Style)

Shared backbone, one head.

60



Image Encoding with Backbone

Codes can be used for storage, clustering, etc.

61



Necks and Attention

62



Neck

• Purpose: Refine, fuse, and reweight features from the backbone.

• Key benefit: Improves detection, segmentation, and other tasks, 

especially for objects at different scales.

63



Popular Necks

• Feature Pyramid Networks (FPN)

• PANet (Path Aggregation Network)

• BiFPN (Bidirectional FPN)

• SE blocks (Squeeze-and-Excitation): channel-wise attention.

• CBAM (Convolutional Block Attention Module): spatial + 

channel attention.

64



FPN with Backbone
65



BiFPN
66



Squeeze and Excitation Block

• Weight for every channel is 

calculated with fully connected (FC) 

block.

• Channels are re-weighted (scaled 

according to the SE Block output.

67



Spatial Attention

• Both average and max pooling is 

used (two channels)

• Highlights the important regions

68



Convolutional Block Attention Module (CBAM)

• CBAM = Channel Attention (like SE) + Spatial Attention

• CBAM is useful because it helps a CNN learn what and 

where to focus — without adding much computational cost.

• Introduced in 2018

69



Practical Tips

70



How to Choose the Architecture

1. Understand your task

2. Choose backbone

3. Create the head

4. Add attention mechanisms if necesarry

71



Do you need spatial resolution (decoder)?

72

Classification

Is this a cat image?

Detection

Where are the cats?

Segmentation

What pixels are cat?

Regression

How many cats?



Choose a Backbone

• Dataset size?

• Size of the features?

• Computational capacity?

• Problem complexity?

• Image resolution?

73



Backbone Suggestions

• Small dataset - ResNet

• Small features - Modify ResNet, or use VGG

• Computational restrictions – MobileNet

Note: Use pretrained backbone whenever possible.

74



Build Your Head

• Use MLP head or CNN decoder

• Use more complex head if you have enough data

• Shape the output properly for your task (size and activation 

function)

75



Add Attention Mechanisms

Attention mechanisms can simplify the tasks for the head:

• Highlighting the most salient spatial regions

• Emphasizing the most informative feature channels

• Preserving fine details that might otherwise be lost

76



Conclusion

77



Final Points

• CNNs are composed of backbones, necks, and heads.

• Major developments occurred between 2012 and 2018, 

establishing the foundations of modern CNNs.

• New architectures are largely extensions and refinements of core 

ideas, focusing on efficiency, multi-scale feature handling, and 

attention mechanisms.

78



Elharrouss, Omar, et al. "Backbones-review: Feature extraction networks for deep 
learning and deep reinforcement learning approaches." arXiv preprint 
arXiv:2206.08016 (2022).

79


	Slide 1: Convolution Neural Networks Common Architectures
	Slide 2: Short Review of CNNs
	Slide 3: What are CNNs?
	Slide 4: Why We Use CNNs?
	Slide 5: Tasks Suitable for CNNs
	Slide 6: What is the Limitation?
	Slide 7: How CNNs Work?
	Slide 8: Feature Maps
	Slide 9: Pooling
	Slide 10: Pooling and Convolutions – Example Architecture
	Slide 11: Modular Design
	Slide 12: What Do We Actually Need?
	Slide 13: What We Know
	Slide 14: Modular Design Pattern
	Slide 15: Backbone
	Slide 16: Head
	Slide 17: Neck
	Slide 18: Popular Backbones
	Slide 19: Purely Sequential Backbones
	Slide 20: VGG Based Networks (2014+)
	Slide 21: Inception (2014)
	Slide 22: Inception Based Networks
	Slide 23: Residual Connections (2015)
	Slide 24: Bottleneck
	Slide 25: Few Notable ResNets
	Slide 26: DenseNet (2016)
	Slide 27: Popular DenseNets
	Slide 28: Classification and Regression Heads
	Slide 29: Common Head Design
	Slide 30: Backbone and Head Example
	Slide 31: Backbone Output Reshaping
	Slide 32: Softmax Output Activation
	Slide 33: Detection Heads
	Slide 34: Detection Head Design
	Slide 35: Simple Detection Taxonomy
	Slide 36: Two-Stage Detectors
	Slide 37: Popular Two-Stage Detectors
	Slide 38: R-CNN (2014) –  Not end-to-end
	Slide 39: Fast R-CNN (2015) – Partially end-to-end
	Slide 40: Faster R-CNN (2015) – Fully end-to-end
	Slide 41: Popular One-Stage Detectors
	Slide 42: The Concept of Grid and Anchors
	Slide 43: Grid and Anchors
	Slide 44: YOLO: Objectnes Score
	Slide 45: SSD: Background class
	Slide 46: Detection Summary
	Slide 47: Segmentation Models
	Slide 48: Segmentation Models
	Slide 49: Segmentation
	Slide 50: Segmentation Example – Steel Billet
	Slide 51: Segmentation Example - Apples
	Slide 52: Segmentation Example - Apples
	Slide 53: Segmentation Example - Apples
	Slide 54: Encoder
	Slide 55: Decoder 
	Slide 56
	Slide 57: Few Popular Segmentation Models
	Slide 58: Segmentation Output
	Slide 59: Similarity and Clustering Heads
	Slide 60: Similarity Measure (Siamese Network Style)
	Slide 61: Image Encoding with Backbone
	Slide 62: Necks and Attention
	Slide 63: Neck
	Slide 64: Popular Necks
	Slide 65
	Slide 66
	Slide 67: Squeeze and Excitation Block
	Slide 68: Spatial Attention
	Slide 69: Convolutional Block Attention Module (CBAM)
	Slide 70: Practical Tips
	Slide 71: How to Choose the Architecture
	Slide 72: Do you need spatial resolution (decoder)?
	Slide 73: Choose a Backbone
	Slide 74: Backbone Suggestions
	Slide 75: Build Your Head
	Slide 76: Add Attention Mechanisms
	Slide 77: Conclusion
	Slide 78: Final Points
	Slide 79

