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Motivational Example
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How to Recognize a Cat-like Object in an Image?
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Search for the Cat-like Features!
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Why it is not easy?

• They are on different location

• They have different scale and rotation

• They actually look very different

• The colors and lighting are different

At least the features are somehow organized in cat-like patterns!
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Neural Networks Review and

Problem Introduction
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Tasks Suitable for Deep Learning

Classification

Is this a cat image?

Detection

Where are the cats?

Segmentation

What pixels are cat?

Regression

How many cats?
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Single Neural Unit

We search for W values to minimize the error of the output y :
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Multi-layer Perceptron

Many neurons:
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Activation Function

Why we use them:

• To introduce non-linearity, which allows the network to learn 

complex functions.

• Without them, MLPs (even deep ones) are no better than a single 

linear layer.
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MLP use in Image Processing

Naive example:

Is this a smart idea?
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The Actual Challange

• Object can translate

• Object can rotate

• Object can scale

• Colors can change

12



Challange Summary

So what we actually need to find in images?

• Patterns

• Patterns of patterns

• Patterns of [Patterns of [Patterns, ...], ...]

How to learn patterns in an effective way?
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2D Convolution (Simplified)
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2D Convolution

• Computation for a single point (x,y) - the surrounding is used.

• Kernel (filter) can have various size
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2D Convolution

This process is repeated for all points – sliding window like.
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2D Convolution

We already know this:

What about sizes, dilations and strides?
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Kernel (Filter) Size
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Convolution Stride
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2D Convolution Output Meaning

• It computes a cross-correlation between the input and the kernel.

• Each kernel is designed to detect a specific pattern or feature.

• A high output value indicates a strong presence of the kernel's 

pattern in the input.

• We can adjust the kernel values to detect the desired pattern.
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Example Feature Map

Kernel values:

-1, 0, 1

-2, 0, 2

-1, 0, 1
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Multi-channel Convolution Simplified
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Multiple Channels

• Kernel can have another dimmension (depth)

• Kernel still moves only in x and y – 2D convolution
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Overview

• We can have filters with various sizes to catch patterns.

• We can catch patterns over stacks of images (channels).

• We can use multiple filters to catch multiple patterns!
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Convolution Pipeline Summary

We can nest the convolutions to finally catch complex

Patterns of [Patterns of [Patterns of, ...], ...]

The ouput of this convolution is called feature map.

But what are the actual patterns?
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Low-level Patterns (early layers)

• Edges (horizontal, vertical, diagonal)

• Corners & lines

• Color gradients

• Simple textures
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Mid-level Patterns (middle layers)

• Contours

• Shapes or parts of objects

• Textures or repeated motifs

• Combinations of edges (e.g. curves, junctions)
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High-level Patterns (final layers)

• Full object parts (e.g. wheel, eye, window)

• Whole object configurations (e.g. faces, cars)

• Class-discriminative features (e.g. dog vs. cat characteristics)
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Feature Map Summary

• We can catch patterns with feature maps. 

• We know what the patterns mean.

• What we can do with them?
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Utilization of Feature Maps
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Feature maps

We can generate multiple feature maps and refine them using

subsequent 1×1 convolutions to reduce dimensionality or enhance

specific features. But what to do with them?
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Pooling

• We can downsample the feature maps by replacing regions with 

their maximum or average value.

• It is commonly known as max pooling or average pooling.
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Pooling

• We now create a funnel-like structure by alternating convolutional

and pooling layers.

• How does it help?
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Pooling

• We exchange spatial resolutions for feature descriptors

(channels).

• These channels can actually contain the information we need!
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Pooling and Convolutions – Example Architecture
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Example Architecture – Fully Connected Head
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Practical Questions
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What Numbers We Have to Use?

• Common GPUs (e.g., using CUDA) are highly optimized for 32-bit 

floating point (FP32) operations

• Inputs, weights, and activations are usually kept in FP32.

• This is the default, and there's no need to round or quantize

manually.
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Should We Normalize the Input Images?

• If inputs (or filters) are too large or have large variance, the outputs 

of layers can: 

o Explode (very large values),

o Vanish (very small values)

• We shold normalize the values (for example 0-1).
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How the Convolution is Actually Done?

• The entire input tensor is unfolded into a collection of all possible 

windows (patches),

• These windows are arranged into rows of a big 2D matrix,

• The filters are flattened into a matrix as well,

• Then a big matrix multiplication is done all at once (in parallel).
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What Activation Function We Use in CNNs?

Mainly ReLU and similar alternatives, because:

• Simple & fast to compute

• Introduces non-linearity while preserving positive values

• Promotes sparsity (many neurons become inactive → less

overfitting)

• Avoids the vanishing gradient problem for positive inputs
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How Those Functions Looks?
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Training
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Training Overview

CNN training is very similar to MLP:

1. Forward pass: input image flows through the network

2. Loss computation: measure prediction error

3. Backpropagation: compute gradients for all weights

4. Weight update: adjust weights using the gradients
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Loss Computation

• Measures how far the network’s predictions are from the ground 

truth.

• Produces a single scalar value representing the overall error.

• Depends on the task and ground truth type, e.g., regression vs. 

classification.
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Table: Loss functions according to task
46

Task Ground truth shape Common loss functions

Regression Single value or vector
Mean Squared Error (MSE), 

Mean Absolute Error (MAE)

Binary classification Single probability Binary Cross-Entropy (BCE),

Multi-class classification One-hot vector Cross-Entropy Loss

Image segmentation 2D class map Cross-Entropy, Dice Loss

Object detection
Bounding boxes + class labels 

(structured)

Smooth L1 (boxes), 

Cross-Entropy (labels)



Cross Entropy

C = number of classes,

y = ground truth (1 for the correct class, 0 for others — one-hot 

encoded),

p = predicted probability for class

Example ground truth (5 classes): [0, 0, 0, 0, 1]

Example predicted probability: [0.1, 0.0, 0.2, 0.1, 0.9)
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Dice Loss

• ∣P∩G∣ = number of pixels where prediction and ground truth are 

both 1

• ∣P| = number of pixels predicted as positive

• ∣G∣ = number of pixels in the ground truth positive region
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Backpropagation

• Calculates how much each weight contributed to the overall error.

• Starts from the output layer and propagates the error back through 

the network.

• Uses chain rule: Computes gradients layer by layer using calculus.

• Updates all parameters: Provides the gradients needed for the 

optimizer to adjust weights.
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Weight Update

• Driven by gradients: Uses gradients from backpropagation to 

determine how each weight should change.

• Shared weights: A single convolution filter is updated based on 

all positions where it was applied.

• Optimizers smartly adjust how weights are updated, controlling 

the step size and direction to make training faster, more stable, 

and more efficient.
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Table: Popular optimizers
51

Optimizer Key idea Effect

SGD Basic gradient descent
Simple but may be slow or 

unstable

SGD + Momentum Adds memory of past gradients
Smooths updates, faster 

convergence

RMSprop
Scales updates by recent gradient 

magnitudes

Balances learning rate 

automatically

Adam Momentum + adaptive scaling Fast, stable, widely used



Training Data
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Quality of Data

• Data diversity: Include all relevant scenarios the model must 

handle to avoid overfitting.

• Resolution too high: Model becomes slow or untrainable.

• Resolution too low: Important features may be lost.

• Balanced dataset: Ensure fair representation of all classes.
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Quantity of Data – How Much is Enough?

• Too little data: High risk of overfitting and poor generalization.

• More data = better model, but with diminishing returns after a 

certain point.

• Dataset for specifics tasks commonly have 500-10000 images 

• Augmentation is often used (synthetic modifications of data)
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How to Split the Data?

• Epoch: One complete pass through the entire training dataset.

• Validate after each epoch to monitor performance.

• Validation loss is for evaluation only

• Typical training/validation split is 80/20 or 90/10

• There is no universal rule for choosing the split ratio – it depends 

on the problem and available data.
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Overfitting vs Underfitting
56

Underfit

Overfit

Nice fit



Overfitting – an Intuitive Example
57

If there’s a fixed or unique pattern (like the same 5×5 corner) in every training image, the 

network can memorize this exact patch rather than learning a generalizable concept.



Data augmentation

• Augmentation is modification of the training data (e.g., color, noise, 

blur, flipping, etc.).

• If possible, apply augmentations on the fly so the model never 

sees the exact same image twice.
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Batch Training

• Processes multiple samples together in each training step.

• Speeds up computation through parallelism (e.g., on GPUs).

• The loss is computed per sample.

• Then summed or averaged over the batch.
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Batch Training
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Practical Tips on Training
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Dataset Suggestions

• Minimize labeling errors: Ensure your dataset has accurate and 

consistent labels

• Use augmentation for small datasets.

• Match model complexity to dataset size.
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How to Setup the First Training?

• Use the biggest batch your device can fit in memory.

• Use Adam or AdamW optimizer with learning rate 1e-4 or 1e-3

• Use learning rate scheduler from beginning

• Use augmentation every time
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Transfer Learning

• It is reuse of pretrained models trained on large datasets.

• Speeds up training and reduces data requirements.

• Commonly freeze deeper layers.
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Conclusion
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What we have learned?

• CNNs can quantify specific features and patterns in image.

• These quantifications (feature maps) can be used for reasoning.

• The performance of CNN is limited by training data.

• The computational cost of CNNs training can be significant.

• The core idea of CNNs is very simple, but technical details of

implementation are rather complicated.
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