Neural Networks in Machine Vision

CTU, FS, U12110
Ing. Matous Cejnek, Ph.D.

Motivational Example

» < v
Why it is not easy? @ @

They are on different location

They have different scale and rotation

They actually look very different

The colors and lighting are different

At least the features are somehow organized in cat-like patterns!

Neural Networks Review and
Problem Introduction

Tasks Suitable for Deep Learning

Classification Detection Segmentation Regression
Is this a cat image? Where are the cats? What pixels are cat? How many cats?

—
.

Single Neural Unit

We search for W values to minimize the error of the output y :

b'WU

T
X1 Wy > 0 y y — (’D E miwi _I_ bﬂ)[]
1=1

X3-W3

Activation Function

Output
N

—— RelU

0 - —— — ELU
—— Sigmoid
— Tanh
-1 4 - GELU

/ Leaky RelU

T T T T
-4 -2 0 2 4

Why we use them: input

To introduce non-linearity, which allows the network to learn
complex functions.

Without them, MLPs (even deep ones) are no better than a single
linear layer.

10

MLP use in Image Processing

Naive example:

Image

Is this a smart idea?

.....

11

The Actual Challange

Obiject can translate

Object can rotate

Object can scale

Colors can change

12

Challange Summary

So what we actually need to find in images?
« Patterns

« Patterns of patterns

« Patterns of [Patterns of [Patterns, ...], ...]

How to learn patterns in an effective way?

13

2D Convolution (Simplified)

2D Convolution

« Computation for a single point (x,y) - the surrounding is used.

« Kernel (filter) can have various size Data Filter

15

16

-
=
Vv

C
WNIVERSITY

2D Convolution

This process is repeated for all points — sliding window like.

33

0

3

1

-1 -5/-6|0

|3 |-1

0/0|0 0j0|JOfO]O

-1

0

0 0 0 ©

2210

0 -2 -3 5|0

0|10({0)0|0|OfO]O

111310
-1
-3 5 0

1

1713

-2 6|0

-2

-2

-2
-9

3 8 2 6|0

-1 5|61(0

61|-2

ololo 0|0|0|0 0

0

0/ 0 0 6

0

0

ojojojojojojo]o

2D Convolution

We already know this: 0 0

What about sizes, dilations and strides”?

17

Kernel (Filter) Size

Size: (3,3) Size: (5,5)
Dilation: (1, 1) Dilation: (1,1)
Receptive field: (3x3) Receptive field: (5x5)

Size: (3,3)
Dilation: (2,2)
Receptive field: (5x5)

Size: (5,3)
Dilation: (1,2)
Receptive field: (5x5)

18

v Vv

Stride: (1, 1) Stride: (2, 2) Stride: (1, 2)

I 1
]

]

i 1

i]

— F--d
1 1

i]
—_———r——r—-— +--4
I 1

|] |] !

[S J— [J—

19

2D Convolution Output Meaning

It computes a cross-correlation between the input and the kernel.

Each kernel is designed to detect a specific pattern or feature.

A high output value indicates a strong presence of the kernel's
pattern in the input.

We can adjust the kernel values to detect the desired pattern.

20

Example Feature Map

Kernel Values: | Agiginallmage -
v o 't |

0. "
2.0,2 ol

-1,0, 1

Feature Map

21

CTU

CIHCH TECHWICAL
ENIVERSITY
I'H FRAG UL

Multi-channel Convolution Simplified

Filter Learnable parameters

Layer 1 Layer 2 Layer 3

o ol1]0

| K
1]-4]1 1]-a]1 1]-8]1
0 % ::> ol1]0 o/1]0 010

bias

Y

22

| .
e "
.
= s (=
I::> HERE 01 8 8 0
9 1 30 1
3.1 0 01 11

Sliding window input

Input tensor

I
:
|

Ouwtput

Multiple Channels

— —

3x3 conv., 4 filters 3x3 conv., 2 filters

« Kernel can have another dimmension (depth)

« Kernel still moves only in x and y — 2D convolution

23

24

Overview

:{> ‘::>

3x3 conv, 4 filters 1x1 conv., 2 filters

* We can have filters with various sizes to catch patterns.
« We can catch patterns over stacks of images (channels).

« We can use multiple filters to catch multiple patterns!

Convolution Pipeline Summary

We can nest the convolutions to finally catch complex

Patterns of [Patftemns of [Patterns of, ...], ...]

The ouput of this convolution is called feature map.

But what are the actual patterns?

25

Low-level Patterns (early layers)

Edges (horizontal, vertical, diagonal)

Corners & lines

Color gradients

Simple textures

26

Mid-level Patterns (middle layers)

Contours

Shapes or parts of objects

Textures or repeated motifs

Combinations of edges (e.g. curves, junctions)

27

High-level Patterns (final layers)

» Full object parts (e.g. wheel, eye, window)
« Whole object configurations (e.g. faces, cars)

« Class-discriminative features (e.g. dog vs. cat characteristics)

28

Feature Map Summary

 We can catch patterns with feature maps.
We know what the patterns mean.

« What we can do with them?

29

Utilization of Feature Maps

Feature maps

|:{> ‘::>

3x3 conv., 4 filters 1x1 conv., 2 filters

We can generate multiple feature maps and refine them using
subsequent 1x1 convolutions to reduce dimensionality or enhance
specific features. But what to do with them?

31

Pooling

—

Pooling 2x2

« We can downsample the feature maps by replacing regions with
their maximum or average value.

« Itis commonly known as max pooling or average pooling.

32

Pooling

=
AT

==at

= = = =

conv. 3x3, 2x pooling 2x2 > 1x1 conv. 3x3 pooling 2x2 » 1x1

« We now create a funnel-like structure by alternating convolutional
and pooling layers.

« How does it help?

Pooling

sadd

|
TV

= = = =

conv. 3x3, 2x pooling 2x2 > 1x1 conv. 3x3 pooling 2x2 » 1x1

« We exchange spatial resolutions for feature descriptors
(channels).

 These channels can actually contain the information we need!

34

Pooling and Convolutions — Example Architecture

11

0.1 ‘0.2 ‘U_U‘ 0.2 ‘0_0 090302

l

Highest value = winner class

35

36

Example Architecture — Fully Connected Head

CNN Backbone Fully Connected Layers

OC

N
|
olelelolole
Q0000

0QUY
7

(FEEEEeey) =

Practical Questions

37

What Numbers We Have to Use?

« Common GPUs (e.g., using CUDA) are highly optimized for 32-bit
floating point (FP32) operations

* Inputs, weights, and activations are usually kept in FP32.

» This is the default, and there's no need to round or quantize
manually.

38

Should We Normalize the Input Images?

« If inputs (or filters) are too large or have large variance, the outputs
of layers can:

o Explode (very large values),
o Vanish (very small values)

* We shold normalize the values (for example 0-1).

39

40

How the Convolution is Actually Done??

» The entire input tensor is unfolded into a collection of all possible
windows (patches),

« These windows are arranged into rows of a big 2D matrix,
« The filters are flattened into a matrix as well,

* Then a big matrix multiplication is done all at once (in parallel).

What Activation Function We Use in CNNs?

Mainly ReLU and similar alternatives, because:

Simple & fast to compute
Introduces non-linearity while preserving positive values

Promotes sparsity (many neurons become inactive — less
overfitting)

Avoids the vanishing gradient problem for positive inputs

41

CTU

CIHCH TECHWICAL
ENIVERSITY
I'H FRAGUL

How Those Functions Looks?

RelLU Leaky RelLU ELU GELU
1.0 1.0 4 1.00 A
0.8
0.75 4
0.8 0.8 1
0.50 - 0.6
0.6 4 0.25 A
] 0.6 1 e] e 0.4
= = = =
g s £ o000 g
8 4l 3 0.4 3 3
. —0.25 1 0.2 1
0.2 - —0.50
0.2+ 0.0
—-0.75 A
0.0 H————=
00 T T T T ~1:007 T T -0.2 T T
5.0 —-2.5 0.0 =5.0 -2.5 0.0 =5.0 —-2.5 0.0 =5.0 —-2.5 0.0

Input Input Input Input

Training

43

Training Overview

CNN training is very similar to MLP:

1. Forward pass: input image flows through the network
2. Loss computation: measure prediction error

3. Backpropagation: compute gradients for all weights
4

Weight update: adjust weights using the gradients

44

Loss Computation

 Measures how far the network’s predictions are from the ground
truth.

* Produces a single scalar value representing the overall error.

* Depends on the task and ground truth type, e.g., regression vs.
classification.

45

Table: Loss functions according to task

46

Ground truth shape

Common loss functions

Regression

Single value or vector

Mean Squared Error (MSE),
Mean Absolute Error (MAE)

Binary classification

Single probability

Binary Cross-Entropy (BCE),

Multi-class classification

One-hot vector

Cross-Entropy Loss

Image segmentation

2D class map

Cross-Entropy, Dice Loss

Object detection

Bounding boxes + class labels
(structured)

Smooth L1 (boxes),
Cross-Entropy (labels)

C
Cross Entropy L=~ 21: i - log(pi)

C = number of classes,

y = ground truth (1 for the correct class, 0 for others — one-hot
encoded),

p = predicted probability for class
Example ground truth (5 classes): [0, 0, 0, 0, 1]
Example predicted probability: [0.1, 0.0, 0.2, 0.1, 0.9)

47

_ 2-|PNG
. Dice =
Dice Loss P|+ |G

Dice Loss = 1 — Dice

* |PNG| = number of pixels where prediction and ground truth are
both 1

* |P| = number of pixels predicted as positive

* |G| = number of pixels in the ground truth positive region

48

49

Backpropagation

« Calculates how much each weight contributed to the overall error.

 Starts from the output layer and propagates the error back through
the network.

« Uses chain rule: Computes gradients layer by layer using calculus.

« Updates all parameters: Provides the gradients needed for the
optimizer to adjust weights.

50

Weight Update

« Driven by gradients: Uses gradients from backpropagation to
determine how each weight should change.

« Shared weights: A single convolution filter is updated based on
all positions where it was applied.

« Optimizers smartly adjust how weights are updated, controlling
the step size and direction to make training faster, more stable,
and more efficient.

Table: Popular optimizers

51

Optimizer

Key idea

Effect

SGD

Basic gradient descent

Simple but may be slow or
unstable

SGD + Momentum

Adds memory of past gradients

Smooths updates, faster
convergence

RMSprop

Scales updates by recent gradient
magnitudes

Balances learning rate
automatically

Adam

Momentum + adaptive scaling

Fast, stable, widely used

Training Data

52

Quality of Data

Data diversity: Include all relevant scenarios the model must
handle to avoid overfitting.

Resolution too high: Model becomes slow or untrainable.

Resolution too low: Important features may be lost.

Balanced dataset: Ensure fair representation of all classes.

53

Quantity of Data — How Much is Enough?

Too little data: High risk of overfitting and poor generalization.

More data = better model, but with diminishing returns after a
certain point.

Dataset for specifics tasks commonly have 500-10000 images

Augmentation is often used (synthetic modifications of data)

54

How to Split the Data?

Epoch: One complete pass through the entire training dataset.

Validate after each epoch to monitor performance.

Validation loss is for evaluation only

Typical training/validation split is 80/20 or 90/10

There is no universal rule for choosing the split ratio — it depends
on the problem and available data.

55

Overfitting vs Underfitting

= Training
- Validation

Underfit

Loss

Nice fit

Training Epoch

56

CTU

Overfitting — an Intuitive Example

CIHCH TECHWICAL
ENIVERSITY
I'H FRAGUL

If there’s a fixed or unique pattern (like the same 5x5 corner) in every training image, the
network can memorize this exact patch rather than learning a generalizable concept.

Top-left 5x5 pixels

Original image

57

Data augmentation

Augmentation is modification of the training data (e.g., color, noise,
blur, flipping, etc.).

If possible, apply augmentations on the fly so the model never
sees the exact same image twice.

58

Batch Training

* Processes multiple samples together in each training step.
« Speeds up computation through parallelism (e.g., on GPUs).

 The loss is computed per sample.

- Then summed or averaged over the batch.

59

CTU

CIHCH TECHWICAL
ENIVERSITY
I'H FRAGUL

Batch Training

Sample 1

Average

60

Practical Tips on Training

61

Dataset Suggestions

* Minimize labeling errors: Ensure your dataset has accurate and
consistent labels

» Use augmentation for small datasets.

« Match model complexity to dataset size.

62

How to Setup the First Training?

Use the biggest batch your device can fit in memory.

Use Adam or AdamW optimizer with learning rate 1e-4 or 1e-3

Use learning rate scheduler from beginning

Use augmentation every time

63

Transfer Learning

 Itis reuse of pretrained models trained on large datasets.
« Speeds up training and reduces data requirements.

« Commonly freeze deeper layers.

64

Conclusion

65

66

What we have learned?

 CNNs can quantify specific features and patterns in image.

« These quantifications (feature maps) can be used for reasoning.
« The performance of CNN is limited by training data.

« The computational cost of CNNSs training can be significant.

 The core idea of CNNs is very simple, but technical details of
Implementation are rather complicated.

	Slide 1: Neural Networks in Machine Vision
	Slide 2: Motivational Example
	Slide 3: How to Recognize a Cat-like Object in an Image?
	Slide 4: Search for the Cat-like Features!
	Slide 5: Why it is not easy?
	Slide 6: Neural Networks Review and Problem Introduction
	Slide 7: Tasks Suitable for Deep Learning
	Slide 8: Single Neural Unit
	Slide 9: Multi-layer Perceptron
	Slide 10: Activation Function
	Slide 11: MLP use in Image Processing
	Slide 12: The Actual Challange
	Slide 13: Challange Summary
	Slide 14: 2D Convolution (Simplified)
	Slide 15: 2D Convolution
	Slide 16: 2D Convolution
	Slide 17: 2D Convolution
	Slide 18: Kernel (Filter) Size
	Slide 19: Convolution Stride
	Slide 20: 2D Convolution Output Meaning
	Slide 21: Example Feature Map
	Slide 22: Multi-channel Convolution Simplified
	Slide 23: Multiple Channels
	Slide 24: Overview
	Slide 25: Convolution Pipeline Summary
	Slide 26: Low-level Patterns (early layers)
	Slide 27: Mid-level Patterns (middle layers)
	Slide 28: High-level Patterns (final layers)
	Slide 29: Feature Map Summary
	Slide 30: Utilization of Feature Maps
	Slide 31: Feature maps
	Slide 32: Pooling
	Slide 33: Pooling
	Slide 34: Pooling
	Slide 35: Pooling and Convolutions – Example Architecture
	Slide 36: Example Architecture – Fully Connected Head
	Slide 37: Practical Questions
	Slide 38: What Numbers We Have to Use?
	Slide 39: Should We Normalize the Input Images?
	Slide 40: How the Convolution is Actually Done?
	Slide 41: What Activation Function We Use in CNNs?
	Slide 42: How Those Functions Looks?
	Slide 43: Training
	Slide 44: Training Overview
	Slide 45: Loss Computation
	Slide 46
	Slide 47: Cross Entropy
	Slide 48: Dice Loss
	Slide 49: Backpropagation
	Slide 50: Weight Update
	Slide 51
	Slide 52: Training Data
	Slide 53: Quality of Data
	Slide 54: Quantity of Data – How Much is Enough?
	Slide 55: How to Split the Data?
	Slide 56
	Slide 57
	Slide 58: Data augmentation
	Slide 59: Batch Training
	Slide 60: Batch Training
	Slide 61: Practical Tips on Training
	Slide 62: Dataset Suggestions
	Slide 63: How to Setup the First Training?
	Slide 64: Transfer Learning
	Slide 65: Conclusion
	Slide 66: What we have learned?

