
Guiding an Automated Theorem Prover with
Neural Rewriting

Jelle Piepenbrock1,2[0000−0002−8385−9157], Tom Heskes2[0000−0002−3398−5235],
Mikoláš Janota1[0000−0003−3487−784X], and Josef Urban1[0000−0002−1384−1613]

1 Czech Technical University in Prague, Czech Republic
2 Radboud University, The Netherlands

Abstract. Automated theorem provers (ATPs) are today used to at-
tack open problems in several areas of mathematics. An ongoing project
by Kinyon and Veroff uses Prover9 to search for the proof of the Abelian
Inner Mapping (AIM) Conjecture, one of the top open conjectures in
quasigroup theory. In this work, we improve Prover9 on a benchmark
of AIM problems by neural synthesis of useful alternative formulations
of the goal. In particular, we design the 3SIL (stratified shortest solu-
tion imitation learning) method. 3SIL trains a neural predictor through
a reinforcement learning (RL) loop to propose correct rewrites of the
conjecture that guide the search.
3SIL is first developed on a simpler, Robinson arithmetic rewriting task
for which the reward structure is similar to theorem proving. There we
show that 3SIL outperforms other RL methods. Next we train 3SIL on
the AIM benchmark and show that the final trained network, deciding
what actions to take within the equational rewriting environment, proves
70.2% of problems, outperforming Waldmeister (65.5%). When we com-
bine the rewrites suggested by the network with Prover9, we prove 8.3%
more theorems than Prover9 in the same time, bringing the performance
of the combined system to 90%.

Keywords: Automated theorem proving · machine learning

1 Introduction

Machine learning (ML) has recently proven its worth in a number of fields, rang-
ing from computer vision [17], to speech recognition [15], to playing games [28,40]
with reinforcement learning (RL) [45]. It is also increasingly applied in auto-
mated and interactive theorem proving. Learned predictors have been used for
premise selection [1] in hammers [6], to improve clause selection in saturation-
based theorem provers [9], to synthesize functions in higher-order logic [12], and
to guide connection-tableau provers [21] and interactive theorem provers [14,2,5].

Future growth of the knowledge base of mathematics and the complexity of
mathematical proofs will increase the need for proof checking and its better com-
puter support and automation. Simultaneously, the growing complexity of soft-
ware will increase the need for formal verification to prevent failure modes [10].

2 Piepenbrock et al.

Automated theorem proving and mathematics will benefit from more advanced
ML integration. One of the mathematical subfields that makes substantial use
of automated theorem provers is the field of quasigroup and loop theory [32].

1.1 Contributions

In this paper, we propose to use a neural network to suggest lemmas to the
Prover9 [25] ATP system by rewriting parts of the conjecture (Section 2). We test
our method on a dataset of theorems collected in the work on the Abelian Inner
Mapping (AIM) Conjecture [24] in loop theory. For this, we use the AIMLEAP
proof system [7] as a reinforcement learning environment. This setup is described
in Section 3. For development we used a simpler Robinson arithmetic rewriting
task (Section 4). With the insights derived from this and a comparison with
other methods, we describe our own 3SIL method in Section 5. We use a neural
network to process the state of the proving attempt, for which the architecture is
described in Section 6. The results on the Robinson arithmetic task are described
in Section 7.1. We show our results on the AIMLEAP proving task, both using
our predictor as a stand-alone prover and by suggesting lemmas to Prover9 in
Section 7.2. Our contributions are:

1. We propose a training method for reinforcement learning in theorem proving
settings: stratified shortest solution imitation learning (3SIL). This method
is suited to the structure of theorem proving tasks. This method and the
reasoning behind it is explained in Section 5.

2. We show that 3SIL outperforms other baseline RL methods on a simpler,
Robinson arithmetic rewriting task for which the reward structure is similar
to theorem proving (Section 7.1).

3. We show that a standalone neurally guided prover trained by the 3SIL
method outperforms the hand-engineered Waldmeister prover on the AIM-
LEAP benchmark (Section 7.2).

4. We show that using a neural rewriting step that suggests rephrased versions
of the conjecture to be added as lemmas improves the ATP performance on
equational problems (Sections 2 and 7.2).

2 ATP and Suggestion of Lemmas by Neural Rewriting

Saturation-based ATPs make use of the given clause [30] algorithm, which we
briefly explain as background. A problem is expressed as a conjunction of many
initial clauses (i.e., the clausified axioms and the negated goal which is always an
equation in the AIM dataset). The algorithm starts with all the initial clauses
in the unprocessed set. We then pick a clause from this set to be the given
clause and move it to the processed set and do all inferences with the clauses in
the processed set. The newly inferred clauses are added to the unprocessed set.
This concludes one iteration of the algorithm, after which we pick a new given

Guiding an Automated Theorem Prover with Neural Rewriting 3

Phase 1 Phase 2

Rewrite Conjecture &
Collect Lemmas

ATP Search With Added
Lemmas

Predictor

RL Environment

RL Loop

Starting Goal

3 = 1 + 1 + 1

 Rewritten Goal

 3 = 1 + 2

 Collected Lemma

 1 + 1 + 1 = 1 + 2

Guidance Lemmas

ATP Search
ATP Input

Fig. 1. Schematic representation of the proposed guidance method. In the first phase,
we run a reinforcement learning loop to propose actions that rewrite a conjecture. This
predictor is trained using the AIMLEAP proof environment. We collect the rewrites
of the LHS and RHS of the conjecture. In the second phase, we add the rewrites to
the ATP search input, to act as guidance. In this specific example, we only rewrote
the conjecture for 1 step, but the added guidance lemmas are in reality the product of
many steps in the RL loop.

clause and repeat [23]. Typically, this approach is designed to be refutationally
complete, i.e., the algorithm is guaranteed to eventually find a contradiction if
the original goal follows from the axioms.

This process can produce a lot of new clauses and the search space can
become quite large. In this work, we modify the standard loop by adding useful
lemmas to the initial clause set. These lemmas are proposed by a neural network
that was trained from zero knowledge to rewrite the left- and right-hand sides of
the initial goal to make them equal by using the axioms as the available rewrite
actions. Even though the neural rewriting might not fully succeed, the rewrites
produced by this process are likely to be useful as additional lemmas when added
to the problem. This idea is schematically represented in Figure 1.

3 AIM Conjecture and the AIMLEAP RL Environment

Automated theorem proving has been applied in the theory surrounding the
Abelian Inner Mapping Conjecture, known as the AIM Conjecture. This is one
of the top open conjectures in quasigroup theory. Work on the conjecture has
been going on for more than a decade. Automated theorem provers use hundreds
of thousands of inference steps when run on problems from this theory.

As a testbed for our machine learning and prover guidance methods we use
a previously published dataset of problems generated by the AIM conjecture [7].
The dataset comes with a simple prover called AIMLEAP that can take machine
learning advice.3 We use this system as an RL environment. AIMLEAP keeps the
state and carries out the cursor movements (the cursor determines the location
of the rewrite) and rewrites that a neural predictor chooses.
3 https://github.com/ai4reason/aimleap

https://github.com/ai4reason/aimleap

4 Piepenbrock et al.

The AIM conjecture concerns specific structures in loop theory [24]. A loop
is a quasigroup with an identity element. A quasigroup is a generalization of a
group that does not preserve associativity. This manifests in the presence of two
different ‘division’ operators, one left-division (\) and one right-division (/). We
briefly explain the conjecture to show the nature of the data.

For loops, three inner mapping functions (left-translation L, right-translation
R, and the mapping T) are:

L(u, x, y) := (y ∗ x)\(y ∗ (x ∗ u))
R(u, x, y) := ((u ∗ x) ∗ y)/(x ∗ y)

T (u, x) := x\(u ∗ x)

These mappings can be seen as measures of the deviation from commutativity
and associativity. The conjecture concerns the consequences of these three inner
mapping functions forming an Abelian (commutative) group. There are two more
notions, that of the associator function a and the commutator function K :

a(x, y, z) := (x ∗ (y ∗ z))\((x ∗ y) ∗ z) K(x, y) := (y ∗ x)/(x ∗ y)

From these definitions, the conjecture can be stated. There are two parts to the
conjecture. For both parts, the following equalities need to hold for all u, v, x,
y, and z :

a(a(x, y, z), u, v) = 1 a(x, a(y, z, u), v) = 1 a(x, y, a(z, u, v)) = 1

where 1 is the identity element. These are necessary, but not sufficient for the
two main parts of the conjecture. The first part of the conjecture asks whether
a loop modulo its center is a group. In this context, the center is the set of all
elements that commute with all other elements. This is the case if

K(a(x, y, z), u) = 1.

The second part of the conjecture asks whether a loop modulo its nucleus is an
Abelian group. The nucleus is the set of elements that associate with all other
elements. This is the case if

a(K(x, y), z, u) = 1 a(x,K(y, z), u) = 1 a(x, y,K(z, u)) = 1

3.1 The AIMLEAP RL Environment

Currently, work in this area is done using automated theorem provers such as
Prover9 [25,24]. This has led to some promising results, but the search space
is enormous. The main strategy for proving the AIM conjecture thus far has
been to prove weaker versions of the conjecture (using additional assumptions)
and then import crucial proof steps into the stronger version of the proof. The
Prover9 theorem prover is especially suited to this approach because of its well-
established hints mechanism [48]. The AIMLEAP dataset is derived from this

Guiding an Automated Theorem Prover with Neural Rewriting 5

Prover9 approach and contains around 3468 theorems that can be proven with
the supplied definitions and lemmas [7].

There are 177 possible actions in the AIMLEAP environment [7]. We handle
the proof state as a tree, with the root node being an equality node. Three
actions are cursor movements, where the cursor can be moved to an argument
of the current position. The other actions all rewrite the current term at the
cursor position with various axioms, definitions and lemmas that hold in the
AIM context. As an example, this is one of the theorems in the dataset (\ and
= are part of the language):

T (T (T (x, T (x, y)\1), T (x, y)\1), y) = T ((T (x, y)\1)\1, T (x, y)\1) .

The task of the machine learning predictor is to process the proof state and
recognize which actions are most likely to lead to a proof, meaning that the two
sides of the starting equation are equal according to the AIMLEAP system. The
only feedback that the environment gives is whether a proof has been found or
not: there is no intermediate reward (i.e. rewards are sparse). The ramifications
of this are further discussed in Section 5.1.

4 Rewriting in Robinson Arithmetic as an RL Task

To develop a machine learning method that can help solve equational theorem
proving problems, we considered a simpler arithmetic task, which also has a tree-
structured input and a sparse reward structure: the normalization of Robinson
arithmetic expressions. The task is to normalize a mathematical expression to
one specific form. This task has been implemented as a Python RL environment,
which we make available.4 The learning environment incorporates an existing
dataset, constructed by Gauthier for RL experiments in the interactive theorem
prover HOL4 [11]. Our RL setup for the task is also modeled after [11].

In more detail, the formalism that we use as an RL environment is Robinson
arithmetic (RA). RA is a simple arithmetic theory. Its language contains the
successor function S, addition + and multiplication * and one constant, the 0.
The theory considers only non-negative numbers and we only use four axioms
of RA. Numbers are represented by the constant 0 with the appropriate number
of successor functions applied to it. The task for the agent is to rewrite an
expression until there are only nodes of the successor or 0 types. Effectively, we
are asking the agent to calculate the value of the expression. As an example,
S(S(0)) + S(0), representing 2 + 1, needs to be rewritten to S(S(S(0))).

The expressions are represented as a tree data structure. Within the environ-
ment, there are seven different rewrite actions available to the agent. The four
axioms (equations) defining these actions are x + 0 = x, x + S(y) = S(x + y),
x ∗ 0 = 0 and x ∗ S(y) = (x ∗ y) + x, where the agent can apply the equations
in either direction. There is one exception: the multiplication by 0 cannot be
applied from right to left, as this would require the agent to introduce a fresh
4 https://github.com/learningeqtp/rewriteRL

https://github.com/learningeqtp/rewriteRL

6 Piepenbrock et al.

term which is out of scope for the current work. The place where the rewrite is
applied is denoted by the location of the cursor in the expression tree.

In addition to the seven rewrite actions, the agent can move the cursor to
one of the children of the current cursor node. This gives a total number of nine
actions. Moving to a child of a node with only one child counts as moving to
the left child. After a rewriting action, the cursor is reset to the root of the
expression. More details on the actions are in the RewriteRL repository.

5 Reinforcement Learning Methods

This section describes the reinforcement learning methods, while Section 6 then
further explains the particular neural architectures that are trained in the RL
loops. We first briefly explain here the approaches that we used as reinforcement
learning (RL) baselines, then we go into detail about the proposed 3SIL method.

5.1 Reinforcement Learning Baselines

General RL setup For comparison, we used implementations of four estab-
lished reinforcement learning baseline methods. In reinforcement learning, we
consider an agent that is acting within an environment. The agent can take ac-
tions a from the action-space A to change the state s ∈ S of the environment.
The agent can be rewarded for certain actions taken in a certain states, with
reward given by the reward function R : (S × A) → R. The behavior of the
environment is given by the state transition function P : (S × A) → S. The
history of the agent’s actions and the environments states and rewards at each
timestep t are collected in tuples (st, at, rt). For a given history of a certain
agent within an environment, we call the list of tuples (st, at, rt) describing this
history an episode. The policy function π : S → A allows the agent to decide
which action to take. The agent’s goal is to maximize the return R: the sum of
discounted rewards

∑
t≥0 γ

trt, where γ is a discount factor that allows control
over how heavily rewards further in the future should be weighted. We will use
Rt when we mean R, but calculated only from rewards from timestep t on. In
the end, we are thus looking for a policy function π that maximizes the sum R
of (discounted) expected rewards [45].

In our setting, every proof attempt (in the AIM setting) or normalization
attempt (in the Robinson arithmetic setting) corresponds to an episode. The
reward structure of theorem proving is such that there is only a reward of 1 at
the end of a successful episode (i.e. a proof was found in AIM). Unsuccessful
episodes get a reward of 0 at every timestep t.

A2C The first method, Advantage Actor-Critic, or A2C [27] contains ideas on
which the other three RL baseline methods build, so we will go into more detail
for this method, while keeping the explanation for the other methods brief. For
details we refer to the corresponding papers.

Guiding an Automated Theorem Prover with Neural Rewriting 7

A2C attempts to find suitable parameters for an agent by minimizing a loss
function consisting of two parts:

L = LA2C
policy + LA2C

value .

In addition to the policy function π, the agent has access to a value function
V : S → R, that predicts the sum of future rewards obtained when given a state.
In practice, both the policy and the value function are computed by a neural
network predictor. The parameters of the predictor are set by stochastic gradient
descent to minimize L. The set of parameters of the predictor that defines the
policy function π is named θ, while the parameters that define the value function
are named µ. The first part of the loss is the policy loss, which for one time step
has the form

LA2C
policy = − log πθ(at|st)A(st, at) ,

where A(s, a) is the advantage function. The advantage function can be formu-
lated in multiple ways, but the simplest is as Rt − Vµ(st). That is to say: the
advantage of an action in a certain state is the difference between the discounted
rewards Rt after taking that action and the value estimate of the current state.

Minimizing LA2C
policy amounts to maximizing the log probability of predicting

actions that are judged by the advantage function to lead to high reward.
The value estimates Vµ(s) for computing the advantage function are supplied

by the value predictor Vµ with parameters µ, which is trained using the loss:

LA2C
value =

1

2
(Rt − Vµ(st))

2
,

which minimizes the advantage function. The logic of this is that the value
estimate at timestep t, Vµ(st), will learn to incorporate the later rewards Rt,
ensuring that when later seeing the same state, the possible future reward will
be considered. Note that the sets of parameters θ and µ are not necessarily
disjoint (see Section 6).

Note how the above equations are affected if there is no non-zero reward rt
obtained at any timestep. In that case, the value function Vµ(st) will estimate
(correctly) that any state will get 0 reward, which means that the advantage
function A(s, a) will also be 0 everywhere. This means that LA2C

policy will be 0
in most cases, which will lead to no or little change in the parameters of the
predictor: learning will be very slow. This is the difficult aspect of the structure
of theorem proving: there is only reward at the end of a successful proof, and
nowhere else. This implies a possible strategy is to imitate successful episodes,
without a value function. In this case, we would only need to train a policy
function, and no approximate value function. This an aspect we explore in the
design of our own method 3SIL, which we will explain shortly.

Compared to two-player games, such as chess and go, for which many ap-
proaches have been tailored and successfully used [41], theorem-proving has the
property that it is hard to collect useful examples to learn from, as only success-
ful proofs are likely to contain useful knowledge. In chess or go, however, one

8 Piepenbrock et al.

player almost always wins and the other loses, which means that we can at least
learn from the difference between the two strategies used by those players. As an
example, we executed 2 million random proof attempts on the AIMLEAP envi-
ronment, which led to 300 proofs to learn from, whereas in a two-player setting
like chess, we would get 2 million games in which one player would likely win.

ACER The second RL baseline method we tested in our experiments is
ACER, Actor-Critic with Experience Replay [49]. This approach can make use of
data from older episodes to train the current predictor. ACER applies corrections
to the value estimates so that data from old episodes may be used to train the
current policy. It also uses trust region policy optimization [35] to limit the size
of the policy updates. This method is included as a baseline to check if using a
larger replay buffer to update the parameters would be advantageous.

PPO Our third RL baseline is the widely used proximal policy optimiza-
tion (PPO) algorithm [36]. It restricts the size of the parameter update to avoid
causing a large difference between the original predictor’s behavior and the up-
dated version’s behavior. The method is related to the above trust region policy
optimization method. In this way, PPO addresses the training instability of
many reinforcement learning approaches. It has been used in various settings,
for example complex video games [4]. With its versatility, the PPO algorithm is
well-positioned. We use the PPO algorithm with clipped objective, as in [36].

SIL-PAAC Our final RL baseline uses only the transitions with positive
advantage to train on for a portion of the training procedure, to learn more from
good episodes. This was proposed as self-imitation learning (SIL) [29]. To avoid
confusion with the method that we are proposing, we extend the acronym to SIL-
PAAC, for positive advantage actor-critic. This algorithm outperformed A2C
on the sparse-reward task Montezuma’s Revenge (a puzzle game). As theorem
proving has a sparse reward structure, we included SIL-PAAC as a baseline.
More information about the implementations for the baselines can be found in
the Implementation Details section at the end of this work.

5.2 Stratified Shortest Solution Imitation Learning

We introduce stratified shortest solution imitation learning (3SIL) to tackle the
equational theorem proving domain. It learns to explicitly imitate the actions
taken during the shortest solutions found for each problem in the dataset. We do
this by minimizing the cross-entropy −log p(asolution|st) between the predictor
output and the actions taken in the shortest solution. This is in contrast to the
baseline methods, where value functions are used to judge the utility of decisions.

In our procedure this is not the case. Instead, we build upon the assumption
for data selection that shorter proofs are better in the context of theorem proving
and expression normalization. In a sense, we value decisions from shorter proofs
more and explicitly imitate those transitions. We keep a history H for each
problem, where we store the current shortest solution (states seen and actions
taken) found for that problem in the training dataset. We can also store multiple
shortest solutions for each problem if there are multiple strategies for a proof
(the number of solutions kept is governed by the parameter k).

Guiding an Automated Theorem Prover with Neural Rewriting 9

Algorithm 1 CollectEpisode
Input: problem p, policy πθ, problem history H
Generate episode by following noisy version of πθ on p
If solution, add list of tuples (s, a) to H[p]
Keep k shortest solutions in H[p]

Algorithm 2 3SIL
Input: set of problems P, randomly initialized policy πθ, batch size B, number of
batches NB, problem history H, number of warmup episodes m, number of episodes
f , max epochs ME
Output: trained policy πθ, problem history H
for e = 0 to ME − 1 do

if e = 0 then num = m else num = f
for i = 0 to num − 1 do

CollectEpisode(sample(P), πθ, H) (Algorithm 1)
end for
for i = 0 to NB − 1 do

Sample B tuples (s, a) with uniform probability for each problem from H
Update θ to lower −

∑B
b=0 log πθ(ab|sb) by gradient descent

end for
end for

During training, in the case k = 1, we sample state-action pairs from each
problem’s current shortest solution at an equal probability (if a solution was
found). To be precise, we first randomly pick a theorem for which we have a
solution, and then randomly sample one transition from the shortest encountered
solution. This directly counters one of the phenomena that we had observed: the
training examples for the baseline methods tend to be dominated by very long
episodes (as they contribute more states and actions). This stratified sampling
method ensures that problems with short proofs get represented equally in the
training process.

The 3SIL algorithm is described in more detail in Algorithm 2. Sampling from
a noisy version of policy πθ means that actions are sampled from the predictor-
defined distribution and in 5% of cases a random valid action is selected. This
is also known as the ϵ-greedy policy (with ϵ at 0.05).

Related Methods Our approach is similar to the imitation learning algo-
rithm DAGGER (Dataset Aggregation), which was used for several games [34]
and modified for branch-and-bound algorithms in [16]. The behavioral cloning
(BC) technique used in robotics [47] also shares some elements. 3SIL signifi-
cantly differs from DAGGER and BC because it does not use an outside expert
to obtain useful data, because of the stratified sampling procedure, and because
of the selection of the shortest solutions for each problem in the training dataset.
We include as an additional baseline an implementation of behavioral cloning
(BC), where we regard proofs already encountered as coming from an expert.
We minimize cross-entropy between the actions in proofs we have found and

10 Piepenbrock et al.

the predictions to train the predictor. For BC, there is no stratified sampling
or shortest solution selection, only the minimization of cross-entropy between
actions taken from recent successful solutions and the predictor’s output.

Extensions For the AIM tasks, we introduce two other techniques, biased
sampling and episode pruning. In biased sampling, problems without a solution
in the history are sampled 5 times more during episode collection than solved
problems to accelerate progress. This was determined by testing 1, 2, 5 and 10
as sampling proportions. For episode pruning, when the agent encountered the
same state twice, we prune the episode to exclude the looping before storing the
episode. This helps the predictor learn to avoid these loops.

6 Neural Architectures

The tree-structured states representing expressions occurring during the tasks
will be processed by a neural network. The neural network takes the tree-
structured state and predicts an action to take that will bring the expression
closer to being normalized or the theorem closer to being proven.

Successor Layer 16D 0-vector

Addition Layer

Processor Network

16D 0-vector

p(action | s) V(s)

Embedding

Fig. 2. Schematic representation of the creation of a representation of an expression (an
embedding) using different neural network layers to represent different operations. The
figure depicts the creation of a numerical representation for the Robinson arithmetic
expression (S(0) + 0). Note that the successor layer and the addition layer consist of
trainable parameters, for which the values are set through gradient descent.

There are two main components to the neural network we use: an embed-
ding tree neural network that outputs a numerical vector representing the tree-
structured proof state and a second processor network that takes this vector
representation of the state and outputs a distribution of the actions possible in
the environment.5

5 In the reinforcement learning baselines that we use, this second processor network
has the additional task of predicting the value of a state.

Guiding an Automated Theorem Prover with Neural Rewriting 11

Tree neural networks have been used in various settings, such as natural lan-
guage processing [20] and also in Robinson arithmetic expression embedding [13].
These networks consist of smaller neural networks, each representing one of the
possible functions that occur in the expressions. For example, there will be sep-
arate networks representing addition and multiplication. The cursor is a special
unary operation node with its own network that we insert into the tree at the
current location. For each unique constant, such as the constant 0 in RA or the
identity element 1 for the AIM task, we generate a random vector (from a stan-
dard normal distribution) that will represent this leaf. In the case of the AIM
task, these vectors are parameters that can be optimized during training.

At prediction time, the numerical representation of a tree is constructed by
starting at the leaves of the tree, for which we can look up the generated vectors.
These vectors act as input to the neural networks that represent the parent node’s
operation, yielding a new vector, which now represents the subtree of the parent
node. The process repeats until there is a single vector for the entire tree after
the root node is processed (see also Figure 2).

The neural networks representing each operation consist of a linear transfor-
mation, a non-linearity in the form of a rectified linear unit (ReLU) and another
linear transformation. In the case of binary operations, the first linear transfor-
mation will have an input dimension of 2n and an output dimension of n, where
n is the dimension of the vectors representing leaves of the tree (the internal rep-
resentation size). The weights representing these transformations are randomly
initialized at the beginning of training.

When we have obtained a single vector embedding representing the entire tree
data structure, this vector serves as the input to the predictor neural network,
which consists of three linear layers, with non-linearities (Sigmoid/ReLU) in
between these layers. The last layer has an output dimension equal to the number
of possible actions in the environment. We obtain a probability distribution over
the actions, e.g. by applying the softmax function to the output of this last layer.
In the cases where we also need a value prediction, there is a parallel last layer
that predicts the state’s value (usually referred to as a two-headed network [41]).
The internal representation size n for the Robinson arithmetic experiments is set
to 16, for the AIM task this is 32. The number of neurons in each layer (except
for the last one) of the predictor networks is 64.

In the AIM dataset task, an arbitrary number of variables can be introduced
during the proof. These are represented by untrainable random vectors. We add a
special neural network (with the same architecture as the networks representing
unary operations, so from size n to n) that processes these vectors before they are
processed by the rest of the tree neural network embedding. The idea is that this
neural network learns to project these new variable vectors into a subspace and
that an arbitrary number of variables can be handled. The vectors are resampled
at the start of each episode, so the agent cannot learn to recognize specific
variables. This approach was partly inspired by the prime mechanism in [13], but
we use separate vectors for all variables instead of building vectors sequentially.
All our neural networks are implemented using the PyTorch library [31].

12 Piepenbrock et al.

7 Experiments

We first describe our experiments on the Robinson arithmetic task, with which
we designed the properties of our 3SIL approach with the help of comparisons
with other algorithms. We then train a predictor using 3SIL on the AIMLEAP
loop theory dataset, which we evaluate both as a standalone prover within the
RL environment and as a neural guidance mechanism for the ATP Prover9.

7.1 Robinson Arithmetic Dataset

Dataset details The Robinson arithmetic dataset [11] is split into three dis-
tinct sets, based on the number of steps that it takes a fixed rewriting strategy
to normalize the expression. This fixed strategy, LOPL, which stands for left
outermost proof length, always rewrites the leftmost possible element. If it takes
this strategy less than 90 steps to solve the problem, it is in the low difficulty
category. Problems with a difficulty between 90 and 130 are in the medium cat-
egory and a greater difficulty than 130 leads to the high category. The high
dataset also contains problems the LOPL strategy could not solve within the
time limit. The low dataset is split into a training and testing set. We train on
the low difficulty problems, but after training we also test on problems with a
higher difficulty. Because we have a difficulty measure for this dataset, we use a
curriculum setup. We start by learning to normalize the expressions that a fixed
strategy can normalize in a small amount of steps. This setup is similar to [11].

Training setup The 400 problems with the lowest difficulty are the starting
point. Every time an agent reaches 95 percent success rate when evaluated on a
sample of size 400 from these problems, we add 400 more difficult problems to
set of training problems P . One iteration of the collection and training phase
is called an epoch. Agents are evaluated after every epoch. The blocks of size
400 are called levels. The number of episodes m and f are set to 1000. For 3SIL
and BC, the batch size BS is 32 and the number of batches NB is 250. The
baselines are configured so that the number of episodes and training transitions
is at least as many as the 3SIL/BC approaches. Episodes that take over 100
steps are stopped. ADAM [22] is used as an optimizer.

Results on RA curriculum In Figure 3, we show the progression through
the training curriculum for behavioral cloning (BC), the RL methods (PPO,
ACER) and two configurations of 3SIL. Behavioral cloning simply imitates ac-
tions from successful episodes. Of the RL baselines, PPO reaches the second level
in one run, while ACER steadily solves the first level and in the best run solves
around 80% of the second level. Both methods do not learn enough solutions for
the second level to advance to the third. A2C and SIL-PAAC do not reach the
second level, so these are left out of the plot. However, they do learn to solve
about 70-80% of the first 400 problems. From these results we can conclude that
the RL baselines do not perform well on this task in our experiment. We at-
tribute this to the difficulty of learning a good value function due to the sparse
rewards (Section 5.1). Our hypothesis is that because this value estimate influ-
ences the policy updates, the RL methods do not learn well on this task. Note

Guiding an Automated Theorem Prover with Neural Rewriting 13

0 50 100 150 200

Epochs

0

2

4

6

8

10

12

L
ev

el

BC

PPO

ACER

3SIL (k=1)

3SIL (k=2)

Fig. 3. The level in the curriculum reached by each method. Each method was run three
times. The bold line shows the mean performance and the shaded region shows the
minimum and maximum performance. K is the number of proofs stored per problem.

that the two methods with a trust region update mechanism, ACER and PPO,
perform better than the methods without this mechanism. From these results,
it is clear that 3SIL with 1 shortest proof stored, k = 1, is the best-performing
configuration. It reaches the end of the training curriculum of about 5000 prob-
lems in 40 epochs. We experimented with k = 3 and k = 4, but these were both
worse than k = 2.

Generalization While our approach works well on the training set, we must
check if the predictors generalize to unseen examples. Only the methods that
reached the end of the curriculum are tested. In Table 1, we show the results
of evaluating the performance of our predictors on the three different test sets:
the unseen examples from the low dataset and the unseen examples from the
medium and high datasets. Because we expect longer solutions, the episode limits
are expanded from 100 steps to 200 and 250 for the medium and high datasets
respectively. For the low and medium datasets, the second of which contains
problems with more difficult solutions than the training data, the predictors
solve almost all test problems. For the high difficulty dataset, the performance
drops by at least 20 percentage points. Our method outperforms the Monte
Carlo Tree Search approach used in [11] on the same datasets, which got to
0.954 on the low dataset with 1600 iterations and 0.786 on the medium dataset
(no results on the high dataset were reported). These results indicate that this
training method might be strong enough to perform well on the AIM rewriting
RL task.
Table 1. Generalization with greedy evaluation on the test set for the Robinson arith-
metic normalization tasks, shown as average success rate and standard deviation from
3 training runs. Generalization is high on the low and medium difficulty (training data
is similar to the low difficulty dataset). With high difficulty data, performance drops.

.
Low Medium High

3SIL (k=1) 1.00 ± 0.01 0.98 ± 0.03 0.77 ± 0.10
3SIL (k=2) 0.99 ± 0.00 0.96 ± 0.01 0.66 ± 0.08
BC 0.98 ± 0.01 0.98 ± 0.01 0.56 ± 0.05

14 Piepenbrock et al.

7.2 AIM Conjecture Dataset

Training setup Finally, we train and evaluate 3SIL on the AIM Conjecture
dataset. We apply 3SIL (k = 1) to train predictors in the AIMLEAP environ-
ment. Ten percent of the AIM dataset is used as a hold-out test set, not seen
during training. As there is no estimate for the difficulty of the problems in terms
of the actions available to the predictor, we do not use a curriculum ordering
for these experiments. The number m of episodes collected before training is
set to 2,000,000. These random proof attempts result in about 300 proofs. The
predictor learns from these proofs and afterwards the search for new proofs is
also guided by its predictions. For the AIM experiments, episodes are stopped
after 30 steps in the AIMLEAP environment. The predictors are trained for 100
epochs. The number of collected episodes per epoch f is 10,000. The successful
proofs are stored, and the shortest proof for each theorem is kept. NB is 500 and
BS is set to 32. The number of problems with a solution in the history after each
epoch of the training run is shown in Figure 4.

0 20 40 60 80

Epochs

0

500

1000

1500

2000

2500

3000

T
ra

in
in

g
pr

ob
le

m
s

so
lv

ed

3SIL (k=1)

Fig. 4. The number of training problems for which a solution was encountered and
stored (cumulative). At the start of the training, the models rapidly collect more solu-
tions, but after 100 epochs, the process slows down and settles at about 2500 problems
with known solutions. The minimum, maximum and mean of three runs are shown.

Results as a standalone prover After 100 epochs, about 2500 of 3114 prob-
lems in the training dataset have a solution in their history. To test the general-
ization capability of the predictors, we inspect their performance on the holdout
test set problems. In Table 2 we compare the success rate of the trained pre-
dictors on the holdout test set with three different automated theorem provers:
E [37,38], Waldmeister [19] and Prover9. E is currently one of the best overall
automated theorem provers [44], Waldmeister is a prover specialized in memory-
efficient equational theorem proving [18] and Prover9 is the theorem prover that
is used for AIM conjecture research and the prover that the dataset was gener-
ated by. Waldmeister and E are the best performing solvers in competitions for
the relevant unit equality (UEQ) category [44].

The results show that a single greedy evaluation of the predictor trying to
solve the problem in the AIMLEAP environment is not as strong as the theorem
proving software. However, the theorem provers got 60 seconds of execution

Guiding an Automated Theorem Prover with Neural Rewriting 15

Table 2. Theorem proving performance on the hold-out test set in fraction of problems
solved. Means and standard deviations are the results of evaluations of 3 different
predictors from 3 different training runs on the 354 unseen test set problems.

Method Success Rate

Prover9 (60s) 0.833
E (60s) 0.802
Predictor + AIMLEAP(60s) 0.702 ± 0.015
Waldmeister (60s) 0.655
Predictor + AIMLEAP (1x) 0.586 ± 0.029

time, and the execution of the predictor, including interaction with AIMLEAP,
takes on average less than 1 second. We allowed the predictor setup to use 60
seconds, by running attempts in AIMLEAP until the time was up, sampling
actions from the predictor’s distribution with 5% noise, instead of using greedy
execution. With this approach, the predictor setup outperforms Waldmeister.6
Figure 5 shows the overlap between the problems solved by each prover. The

2.6%

3.5%

2.6%

2.9%

4.0%

5.8%

11.6%

1.7%

0.9%

1.7%

4.9%

0.6%

2.0%

8.7%

46.5%

Waldmeister

E

Prover9

Predictor + AIMLEAP

Fig. 5. Venn diagram of the test set problems solved by each solver with 60s time limit.

diagram shows that each theorem prover found a few solutions that no other
prover could find within the time limit. Almost half of all problems from the test
set that are solved are solved by all four systems.

Results of neural rewriting combined with Prover9 We also combine the
predictor with Prover9. In this setup, the predictor modifies the starting form
of the goal, for a maximum of 1 second in the AIMLEAP environment. This
produces new expressions on one or both sides of the equality. We then add, as
lemmas, equalities between the left-hand side of the goal before the predictor’s
6 After the initial experiments, we also evaluated Twee [42], which won the most recent

UEQ track: it can prove most of the test problems in 60s, only failing for 1 problem.

16 Piepenbrock et al.

Table 3. Prover9 theorem proving performance on the hold-out test set when injecting
lemmas suggested by the learned predictor. Prover9 ’s performance increases when
using the suggested lemmas.

Method Success Rate

Prover9 (1s) 0.715
Prover9 (2s) 0.746
Prover9 (60s) 0.833
Rewriting (1s) + Prover9 (1s) 0.841 ± 0.019
Rewriting (1s) + Prover9 (59s) 0.902 ± 0.016

rewriting and after each rewriting (see Figure 1). The same is done for the right-
hand side. For each problem, this procedure yields new lemmas that are added
to the problem specification file that is given to Prover9.

In Table 3, it is shown that adding lemmas suggested by the rewriting actions
of the trained predictor improves the performance of Prover9. Running Prover9
for 2 seconds results in better performance than running it for 1 second, as
expected. The combined (1s + 1s) system improved on Prover9’s 2-second per-
formance by 12.7% (= 0.841/0.746), indicating that the predictor suggests useful
lemmas. Additionally, 1 second of neural rewriting combined with 59 seconds of
Prover9 search proves almost 8.3% (= 0.902/0.833) more theorems than Prover9
with a 60 second time limit (Table 2).

7.3 Implementation Details
All experiments for the Robinson task were run on a 16 core Intel(R) Xeon(R)
CPU E5-2670 0 @ 2.60GHz. The AIM experiments were run on a 72 core Intel(R)
Xeon(R) Gold 6140 CPU @ 2.30GHz. All calculations were done on CPU. The
PPO implementation was adapted from an existing implementation [3]. The
model was updated every 2000 timesteps, the PPO clip coefficient was set to 0.2.
The learning rate was 0.002 and the discount factor γ was set to 0.99. The ACER
implementation was adapted from an available implementation [8]. The replay
buffer size was 20,000. The truncation parameter was 10 and the model was
updated every 100 steps. The replay ratio was set to 4. Trust region decay was
set to 0.99 and the constraint was set to 1. The discount factor was set to 0.99 and
the learning rate to 0.001. Off-policy minibatch size was set to 1.The A2C and
SIL implementations were based on Pytorch actor-critic example code available
at the PyTorch repository [33]. For the A2C algorithm, we experimented with
two formulations of the advantage function: the 1-step lookahead estimate (rt +
γVµ(st+1))−Vµ(st) and the Rt−Vµ(st) formulation. However, we did not observe
different performance, so we opted in the end for the 1-step estimate favored in
the original A2C publication. For SIL-PAAC, we implemented the SIL loss on
top of the A2C implementation. There is also a prioritized replay buffer with
an exponent of 0.6, as in the original paper. Each epoch, 8000 (250 batches
of size 32) transitions were taken from the prioritized replay buffer in the SIL
step of the algorithm. The size of the prioritized replay buffer was 40,000. The
critic loss weight was set to 0.01 as in the original paper. For the 3SIL and
behavioral cloning implementations, we sample 8000 transitions (250 batches of

Guiding an Automated Theorem Prover with Neural Rewriting 17

size 32) from the replay buffer or history. For the behavioral cloning, we used a
buffer of size 40,000. An example implementation of 3SIL can be found in the
RewriteRL repository. On the Robinson arithmetic task, for 3SIL and BC, the
evaluation is done greedily (always take the highest probability actions). For
the other methods, we performed experiments with both greedy and non-greedy
(sample from the predictor distribution and add 5% noise) evaluation and show
the results the best-performing setting (which in most cases was the non-greedy
evaluation, except for PPO). On the AIM task, we evaluate greedily with 3SIL.

AIMLEAP expects a distance estimate for each applicable action. This rep-
resents the estimated distance to a proof. This behavior was converted to a
reinforcement learning setup by always setting the chosen action of the model
to the minimum distance and all other actions to a distance larger than the
maximum proof length. Only the chosen action is then carried out.

Versions of the automated theorem provers used: Version 2.5 of E [39], the
Nov 2017 version of Prover9 [26] and the Feb 2018 version of Waldmeister [46]
and version 2.4.1 of Twee [43].

8 Conclusion and Future Work

Our experiments show that a neural rewriter, trained with the 3SIL method that
we designed, can learn to suggest useful lemmas that assist an ATP and improve
its proving performance. With the same limit of 1 minute, Prover9 managed to
prove close to 8.3% more theorems. Furthermore, our 3SIL training method is
powerful enough to train an equational prover from zero knowledge that can
compete with hand-engineered provers, such as Waldmeister. Our system on its
own proves 70.2% of the unseen test problems in 60s, while Waldmeister proved
65.5%.

In future work, we will apply our method to other equational reasoning tasks.
An especially interesting research direction concerns selecting which proofs to
learn from: some sub-proofs might be more general than other sub-proofs. The
incorporation of graph neural networks instead of tree neural networks may
improve the performance of the predictor, since in graph neural networks infor-
mation not only propagates from the leaves to the root, but also through all
other connections.

Acknowledgements

We would like to thank Chad Brown for his work with the AIMLEAP software. In
addition, we thank Thibault Gauthier and Bartosz Piotrowski for their help with
the Robinson arithmetic rewriting task and the AIM rewriting task respectively.
We also thank the referees of the IJCAR conference for their useful comments.

This work was partially supported by the European Regional Development
Fund under the Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15_003/
0000466 (JP, JU), Amazon Research Awards (JP, JU) and by the Czech MEYS
under the ERC CZ project POSTMAN no. LL1902 (JP, MJ).

18 Piepenbrock et al.

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning
52(2), 191–213 (2014). https://doi.org/10.1007/s10817-013-9286-5

2. Bansal, K., Loos, S., Rabe, M., Szegedy, C., Wilcox, S.: HOList: An environment
for machine learning of higher order logic theorem proving. In: International Con-
ference on Machine Learning. pp. 454–463 (2019)

3. Barhate, N: Implementation of PPO algorithm, https://github.com/nikhilbarhate
99

4. Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi,
D., Fischer, Q., Hashme, S., Hesse, C., et al.: DOTA 2 with large scale deep rein-
forcement learning. arXiv preprint arXiv:1912.06680 (2019)

5. Blaauwbroek, L., Urban, J., Geuvers, H.: The Tactician - A seamless, interactive
tactic learner and prover for Coq. In: CICM. Lecture Notes in Computer Science,
vol. 12236, pp. 271–277. Springer (2020)

6. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reasoning 9(1), 101–148 (2016). https://doi.org/10.6092/issn.1972-
5787/4593, http://dx.doi.org/10.6092/issn.1972-5787/4593

7. Brown, C.E., Piotrowski, B., Urban, J.: Learning to advise an equational prover.
Artificial Intelligence and Theorem Proving (2020)

8. Chételat, D: Implementation of ACER algorithm, https://github.com/dchetelat
/acer

9. Chvalovský, K., Jakubuv, J., Suda, M., Urban, J.: ENIGMA-NG: efficient neural
and gradient-boosted inference guidance for E. In: International Conference on
Automated Deduction. pp. 197–215. Springer (2019)

10. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008)

11. Gauthier, T.: Deep reinforcement learning in HOL4. arXiv preprint
arXiv:1910.11797v1 (2019), https://arxiv.org/abs/1910.11797v1

12. Gauthier, T.: Deep reinforcement learning for synthesizing functions in higher-
order logic. In: International Conference on Logic for Programming, Artificial In-
telligence and Reasoning (2020)

13. Gauthier, T.: Tree neural networks in HOL4. In: International Conference on In-
telligent Computer Mathematics. pp. 278–283. Springer (2020)

14. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: TacticToe: Learning
to prove with tactics. Journal of Automated Reasoning pp. 1–30 (2020)

15. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning. pp.
369–376 (2006)

16. He, H., Daume III, H., Eisner, J.M.: Learning to search in branch and bound
algorithms. Advances in Neural Information Processing Systems 27, 3293–3301
(2014)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778 (2016)

18. Hillenbrand, T., Buch, A., Vogt, R., Löchner, B.: WALDMEISTER - High-
Performance Equational Deduction. Journal of Automated Reasoning 18, 265–270
(2004)

https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/s10817-013-9286-5
https://github.com/nikhilbarhate99
https://github.com/nikhilbarhate99
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
http://dx.doi.org/10.6092/issn.1972-5787/4593
https://github.com/dchetelat/acer
https://github.com/dchetelat/acer
https://arxiv.org/abs/1910.11797v1

Guiding an Automated Theorem Prover with Neural Rewriting 19

19. Hillenbrand, T.: Citius altius fortius: Lessons learned from the theorem prover
WALDMEISTER. ENTCS 86(1), 9–21 (2003)

20. Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in lan-
guage. Advances in Neural Information Processing Systems 27, 2096–2104 (2014)

21. Kaliszyk, C., Urban, J., Michalewski, H., Olšák, M.: Reinforcement learning of
theorem proving. Advances in Neural Information Processing Systems 31, 8822–
8833 (2018)

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

23. Kinyon, M.: Proof simplification and automated theorem proving. CoRR
abs/1808.04251 (2018), http://arxiv.org/abs/1808.04251

24. Kinyon, M., Veroff, R., Vojtěchovský, P.: Loops with abelian inner mapping groups:
An application of automated deduction. In: Automated Reasoning and Mathemat-
ics, pp. 151–164. Springer (2013)

25. McCune, W.: Prover9 and Mace (2010), http://www.cs.unm.edu/~mccune/prove
r9/

26. McCune, W: Prover9, https://github.com/ai4reason/Prover9
27. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,

D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
International conference on machine learning. pp. 1928–1937 (2016)

28. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

29. Oh, J., Guo, Y., Singh, S., Lee, H.: Self-imitation learning. In: International Con-
ference on Machine Learning. pp. 3878–3887 (2018)

30. Overbeek, R.A.: A new class of automated theorem-proving algorithms. J. ACM
21(2), 191–200 (Apr 1974). https://doi.org/10.1145/321812.321814, https://doi.
org/10.1145/321812.321814

31. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc. (2019), http://papers.neurips.cc/paper/9015-pytorch-an-impera
tive-style-high-performance-deep-learning-library.pdf

32. Phillips, J., Stanovský, D.: Automated theorem proving in quasigroup and loop
theory. AI Communications 23(2-3), 267–283 (2010)

33. PyTorch: RL Examples, https://github.com/pytorch/examples/tree/main/reinfo
rcement_learning

34. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured
prediction to no-regret online learning. In: Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics. pp. 627–635 (2011)

35. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region pol-
icy optimization. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd Interna-
tional Conference on Machine Learning. Proceedings of Machine Learning Re-
search, vol. 37, pp. 1889–1897. PMLR, Lille, France (07–09 Jul 2015), https:
//proceedings.mlr.press/v37/schulman15.html

36. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

http://arxiv.org/abs/1808.04251
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
https://github.com/ai4reason/Prover9
https://doi.org/10.1145/321812.321814
https://doi.org/10.1145/321812.321814
https://doi.org/10.1145/321812.321814
https://doi.org/10.1145/321812.321814
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/pytorch/examples/tree/main/reinforcement_learning
https://github.com/pytorch/examples/tree/main/reinforcement_learning
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html

20 Piepenbrock et al.

37. Schulz, S.: E - A Brainiac Theorem Prover. AI Commun. 15(2-3), 111–126 (2002)
38. Schulz, S., Cruanes, S., Vukmirovic, P.: Faster, higher, stronger: E 2.3. In: Fontaine,

P. (ed.) Automated Deduction - CADE 27 - 27th International Conference on
Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings. Lecture
Notes in Computer Science, vol. 11716, pp. 495–507. Springer (2019). https://doi.
org/10.1007/978-3-030-29436-6_29, https://doi.org/10.1007/978-3-030-29436-
6_29

39. Schulz, S: Eprover, https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
40. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. Nature 529(7587),
484–489 (2016)

41. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without
human knowledge. Nature 550(7676), 354–359 (2017)

42. Smallbone, N.: Twee: An equational theorem prover. In: Platzer, A., Sutcliffe,
G. (eds.) Automated Deduction - CADE 28 - 28th International Conference on
Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings. Lecture Notes
in Computer Science, vol. 12699, pp. 602–613. Springer (2021). https://doi.org/10
.1007/978-3-030-79876-5_35, https://doi.org/10.1007/978-3-030-79876-5_35

43. Smallbone, N: Twee 2.4.1, https://github.com/nick8325/twee/releases/download
/2.4.1/twee-2.4.1-linux-amd64

44. Sutcliffe, G.: The CADE-27 automated theorem proving system competition -
CASC-27. AI Communications 32(5-6), 373–389 (2020)

45. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction (2018)
46. T. Hillenbrand and A. Buch and R. Vogt and Bernd Löchner: Waldmeister, https:

//www.mpi-inf.mpg.de/departments/automation-of-logic/software/waldmeister/
download

47. Torabi, F., Warnell, G., Stone, P.: Behavioral cloning from observation. In: Pro-
ceedings of the 27th International Joint Conference on Artificial Intelligence. p.
4950–4957. IJCAI’18, AAAI Press (2018)

48. Veroff, R.: Using hints to increase the effectiveness of an automated reasoning
program: Case studies. J. Autom. Reason. 16(3), 223–239 (1996). https://doi.or
g/10.1007/BF00252178, https://doi.org/10.1007/BF00252178

49. Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., de Freitas,
N.: Sample efficient actor-critic with experience replay. International Conference
on Learning Representations (2016)

https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-030-29436-6_29
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
https://doi.org/10.1007/978-3-030-79876-5_35
https://doi.org/10.1007/978-3-030-79876-5_35
https://doi.org/10.1007/978-3-030-79876-5_35
https://doi.org/10.1007/978-3-030-79876-5_35
https://doi.org/10.1007/978-3-030-79876-5_35
https://github.com/nick8325/twee/releases/download/2.4.1/twee-2.4.1-linux-amd64
https://github.com/nick8325/twee/releases/download/2.4.1/twee-2.4.1-linux-amd64
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/waldmeister/download
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/waldmeister/download
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/waldmeister/download
https://doi.org/10.1007/BF00252178
https://doi.org/10.1007/BF00252178
https://doi.org/10.1007/BF00252178
https://doi.org/10.1007/BF00252178
https://doi.org/10.1007/BF00252178

	Guiding an Automated Theorem Prover with Neural Rewriting

