SAT-based Techniques for Lexicographically Smallest Finite Models

<u>Mikoláš Janota</u> Choiwah Chow João Araújo Michael Codish Petr Vojtěchovský

AAAI'24

Motivation: Universal Algebra

- In universal algebra mathematicians study classes of mathematical structures
- **Example:** Semigroups, groups, quasigroups
- Multiplication table a popular representation
- Example binary operations

OR	0	1	AND	0	1	XOR	0	1
0	0	1	0	0	0	0	0	1
1	1	1	1	0	1	1	1	0

Isomorphism

Operations * and \diamond are isomorphic iff there is a bijection *f*, s.t.

$$f(x * y) = f(x) \diamond f(y)$$

Example

Comparing Tables

The Task

Given:

A multiplication table * Calculate:

A multiplication table **\diamond**

isomorphic to *

Iexicographically smallest.

Example

		_	~		_		_	6. j. j.		_	~		_		_		
*	1	2	3	4	5	6	7	\diamond	1	2	3	4	5	6	7		
1	7	5	6	1	4	2	3	1	1	2	3	4	5	6	7		
2	5	3	1	2	6	7	4	2	2	3	4	5	6	7	1		
3	6	1	5	3	7	4	2	3	3	4	5	6	7	1	2		
4	1	2	3	4	5	6	7	4	4	5	6	7	1	2	3		
5	4	6	7	5	2	3	1	5	5	6	7	1	2	3	4		
6	2	7	4	6	3	1	5	6	6	7	1	2	3	4	5		
7	3	4	2	7	1	5	6	7	7	1	2	3	4	5	6		
								\mathbb{Z}_7									

Idea for an Algorithm

*	1	2	3	4	5	6	7		\diamond	1	2	3	4	5	6	7
1	7	5	6	1	4	2	3		1		1	12 3	4	5	6	7
2	5	3	1	2	6	$\overline{7}$	4		2	2	3	4	5	6	7	1
3	6	1	5	3	7	4	2		3	3	4	5	6	7	1	2
4	1	2	3	4	5	6	$\overline{7}$	\rightarrow	4	4	5	6	7	1	2	3
5	4	6	$\overline{7}$	5	2	3	1		5	5	6	7	1	2	3	4
6	2	7	4	6	3	1	5		6	6	7	1	2	3	4	5
7	3	4	2	7	1	5	6		7	7	1	2	3	4	5	6

Finding Isomorphisms with SAT

Rewrite constraint $r \diamond c = v$ as:

 $f(f^{-1}(r) * f^{-1}(c)) = ff^{-1}(r) \diamond ff^{-1}(c) = r \diamond c$

 $f(f^{-1}(r) * f^{-1}(c)) = v$

introduce variables x_{i→j} representing f(i) = j
 make sure x_{i→j} represent a permutation

$$\sum_{j\in D} x_{j\to i} = \sum_{j\in D} x_{i\to j} = 1, \text{ for } i\in D$$

fix $r \diamond c = v$:

$$(x_{i
ightarrow r} \land x_{j
ightarrow c}) \Rightarrow x_{i * j
ightarrow v}$$
 for $i, j \in D$

Main Improvements

Budgeting

- If every row is permutation: avoid unnecessary SAT calls.
- More general:

use max frequency of an element in a row.

First row identification

- Row r full of elements r becomes the first row
- more generally, row r with maximal:

$$\{x \in D \mid r * x = r\}, r * r = r$$

Results

SAT-based Techniques for Lexicographically Smallest Finite Models

Summary and Future Work

- Canonicalize algebras by SAT solvers,
- SAT encoding via isomorphism,
- Propagation tricks to help the SAT solver.

- More propagation?
- Specific types of structures?

https://github.com/MikolasJanota/mlex