

SMT and Functional Equation Solving over the Reals: Challenges from the IMO

Chad E. Brown, Karel Chvalovský, Mikoláš Janota, Mirek Olšák, Stefan Ratschan

CADE, 28 July 2025

Brown, Janota, et al. Functional Equations 1 / 13

International Mathematical Olympiad

- Competition for pre-university students.
- Many other smaller (regional) events.
- Range of problems.
- LLMs are going at it (as we speak).
- How do SMT/ATP fair?

Find All Functions: "All-Synth"

Problem:

Given a specification for a function f, find all such f.

Where:

The class of solutions has a reasonable description.

In the competition participants are also expected to provide a proof.

Example

Input

$$\forall xy : \mathbb{R}. \ f(x+y) = xf(y) + yf(x)$$

$$\forall x : \mathbb{R}. \ f(x) = xf(0) \quad \text{with } y \mapsto 0$$

$$f(0) = 0$$
 with $x, y \mapsto 0$

Solution

$$f = \lambda x$$
. 0

What Is Reasonable? Examples

Spec:
$$\forall x, y : f(x) + f(y) = f(f(x)f(y))$$

Sol: $\lambda x . 0$

Spec:
$$\forall x, y : f(x+y) + f(x)f(y) = f(xy) + f(x) + f(y)$$

Sol: $\lambda x. x. \lambda x. 0. \lambda x. 2$

Spec:
$$\forall x, y : \mathbb{R}. f(x+y) = f(x) + y$$

Sol: $\lambda x. x + c, c \in \mathbb{R}$

Template-and-QE

[Brown et al. SC² 2024]

- \bullet Guess a template for f, e.g. linear
- 2 Inline template.
- 3 Perform Quantifier Elimination over $\forall x$
- Prove there are no more solutions (outside the template).

Template-and-QE, Example

Inline linear template

$$\forall xy. f(x+y) = xf(y) + yf(x)$$

$$\forall xy. a(x+y) + b = x(ay+b) + y(ax+b)$$

QE \forall xy

$$a = b = 0$$

Prove no more solutions

$$\forall xy. \, f(x+y) = xf(y) + yf(x) \Rightarrow \forall x. \, f(x) = 0$$

Proving No-More-Solutions Bottleneck

Negate+Skolemize

$$\forall xy. \, f(x+y) = xf(y) + yf(x) \wedge f(c) \neq 0$$

Instantiate

$$f(0) = 0$$
 $x \mapsto 0, y \mapsto 0$
 $f(c) = cf(0)$ $x \mapsto c, y \mapsto 0$

Contradiction

Partial Instantiations with Simple Terms

- CVC5 has enumerative mode. [Janota et al. FMCAD '21]
- Enumeration only takes into account existing ground terms and does not have domain knowledge.
- 0, 1, c are often useful
 not always present in the formula.
- Make the solve focus on instantiations with 0/1.

Theory-Unification by Equation Solving

Example

$$\forall xy. \ f(x+y) - f(x-y) = xy$$

Nice instantiation

$$\forall z. \ f(z) - f(0) = z^2/4 \ x \mapsto z/2, y \mapsto z/2$$

Look for a substitution that zeroes all arguments except for one, where it's just z.

Brown, Janota, et al. Functional Equations 10 / 13

Lemma Generation

- Generate candidate lemmas, e.g. f(0) = 0, f(1) = 0, ...
- Try to prove lemmas.
- 3 If proven, add to the original problem.
- Lemmas by brute-force up to certain depth.
- Lemmas from target solution, E.g. if proving for $f(x) = x \lor f(x) = -x$, generate candidate $f(c) = c \lor f(c) = -c$.

Results

- Hand-formalized data from a document by Musil.
- Scraped data + LLM to formalize from Art of Problem Solving.
- TARSKI for QE
- Vampire, CVC5, Z3 in portfolio for SMT

		Def.	-EQ	-EQ+FI	-PI	-TU	-PI-TU	-L	-PI-L	-TU-L	Base	VBS
Musil to	ot. nig	21 0	21 0	20 1	18 0	17 0	13 0	19 0	17 0	14 0	13 0	22
AoPS to		77 2	75 1	64 5			47 0	64 0	39 0	58 0	33 0	87

Brown, Janota, et al. Functional Equations 12 / 13

Summary

- Targeting math competition problems "all-synth".
- First attempt: template-and-QE
- Proving that we have all the solutions is hard.

Helping SMT

- Simple partial instantiations.
- Theory reasoning for equalities.
- Adding lemmas.