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Abstract. We present a generic method to configure an automated rea-
soning solver in order to increase its performance on selected target prob-
lems. We describe a strategy invention system Grackle that is designed to
invent a set of strong and complementary solver strategies. The strategies
are then used to train a gradient boosted decision tree model to select
the best strategy for a specific input problem. We evaluate our method
on the SMT solver Bitwuzla and we obtain a significant increase in the
number of solved problems, and a substantial decrease in runtime.
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1 Introduction

Automated reasoning solvers, such as automated theorem provers (ATPs), sat-
isfiability modulo theories (SMT) solvers, and SAT solvers, are important tools
when dealing with computer mathematics. Formal mathematics and interactive
theorem provers (ITPs), such as Mizar [15], Coq [12], and Isabelle [25], are mak-
ing increasing use of automated reasoning solvers, for example, in the form of
dedicated systems called hammers [9]. This involves translating the problems
into the language understood by the underlying solver. Problems coming from
such translations are quite often different from problems that the solver is opti-
mized for. Hence, optimization of solvers to specific target problems is becoming
a topic of increasing importance.

Many solvers allow a user to specify various options to influence the inner
workings of the solver. These options are quite often the only way for the user
to target the solver to specific problems. By a solver strategy, we understand
a collection of solver options and their values, which are used to influence the
behavior of the solver. In this paper, we consider the important question of an
automated configuration of a solver to user-specified problems by deployment of
targeted strategies.

Our method is a combination of strategy invention and strategy selection. In
Section 2 and Section 3, we present a generic strategy invention system Grackle,
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designed to invent a set of strong and complementary strategies for an arbitrary
parametrized solver. Section 4 then describes a method for selecting the best
strategy for a given problem. The strategy selection is implemented by gradient
boosted decision trees, and it tries to predict the best strategy based on syntactic
features of the problem.

The new system Grackle, a successor of the system called BliStr [31], is a
strategy invention system for a generic solver. It is designed to invent a portfolio
(collection) of well-performing but complementary strategies targeted to user-
specified input problems. In this way, the users can develop their own sets of
strategies for specific problems, and does not need to rely on the strategies
predefined in the solver. As opposed to Grackle, the ancestor BliStr is hardwired
to the first-order logic theorem prover E and does not combine strategy invention
with different strategy selection modes.

Grackle is based on an evolutionary algorithm, where strategies are consid-
ered “animals”, and problems to be solved are considered their “food”. Only the
animals that consume enough food, that is, solve enough problems, survive to the
next generation and are given the chance to conceive an offspring. This algorithm
favors animals that consume food that is not consumed by others. This leads to
the diversity and complementarity of the invented strategies. The name Grackle
is motivated by the common name of passerine birds native to North and South
America. During evolution, different grackle species developed different bill sizes
to be able to feed on different types of nutrients. This decreases competition
between different species and increases the chances of their survival. The core of
the Grackle algorithm is based on this successful evolutionary strategy.

While the method proposed in this paper is generic, we focus our evaluation
on SMT solvers, in particular, on a recent SMT solver Bitwuzla [24]. There are
ample connections between SMT and other types of automated reasoning [1,8].
For example, the bitvector theory [5] enables reasoning about exact representa-
tion of numbers in a computer, i.e., arithmetic modulo 2n and exact modeling
of floating-point numbers. Bitwuzla is the winner of the quantifier-free bitvector
(QFBV) category of the SMT competition in 2021.1 Hence Bitwuzla is a reason-
able choice for the experiments. Moreover, we can expect the results with other
solvers to be similar since none of the proposed methods are specific to Bitwuzla.

Related Work. Automatic portfolio selection and parameter tuning has long
history in automated reasoning. Within the SAT community, the use of machine
learning (ML) methods for the selection of a solver from a portfolio was popular-
ized by Leyton-Brown et al. and their system called SATzilla [32]. In the context
ATPs, various ML methods for strategy invention were developed [16,31,19,18].

Our work is mostly related to various approaches using optimization and ML
methods for solver selection and scheduling, especially in the domain of SMT.
Scott et al. developed a system called MachSMT [29] which selects a solver
from a portfolio of existing solvers based on the feature representation of the
given problem. Similarly to us, they use Bag of Words features and reduce the

1 https://smt-comp.github.io/2021/
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dimensionality with PCA. Balunovic et al. [2] use imitation learning techniques
to schedule strategies within the Z3 SMT solver; the approach targets a domain
specific strategy language of Z3 and therefore strategies are not understood in
the same sense as in this paper. Similarly, Ramı́rez et al. [26] use an evolutionary
algorithm to generate strategies for the Z3 solver. For an overview of related use
cases of ML methods see one of the survey papers [7,21,30].

Satisfiability Modulo Theories (SMT). SMT solvers are the driving force
behind software verification, testing, or synthesis, among others [6,27,13,14].
These applications often require repeated queries to an SMT solver. This means
that quick response times of the solver are paramount. An SMT solver receives
as input a formula and responds if it is satisfiable or not. Since the problem is
generally undecidable, solvers often timeout or give up.

The language and the semantics of the given formula depends on the theories
being used. For instance, the formula (3 < x) ∧ (x < 4) is satisfiable in the
theory of real arithmetic but unsatisfiable in the theory of integer arithmetic. The
language and possible theories are standardized in the SMT-LIB standard [5]. A
repository of benchmarks is maintained in the SMT-LIB [4]. A combination of
theories is called a logic. For instance, the logic UFNIA supports uninterpreted
functions (theory UF) and nonlinear integer arithmetic (theory NIA). Hence, it
is mandatory for each problem file to specify the intended logic in the header.

Contributions. The system Grackle is presented for the first time in this work.
While BliStr [31], the ancestor of Grackle, is a strategy invention system for the
ATP prover E [28], Grackle supports an arbitrary solver. Moreover, Grackle adds
support for an additional external tuner and implements additional features like
alternative strategy selection modes and a non-atavistic behavior. Advancements
of Grackle over BliStr are detailed in Section 3 and they are experimentally
evaluated in Section 5. The next contribution is a strategy selector designed to
select the best problem-specific strategy from the portfolio of strategies invented
by Grackle. The selector is described in Section 4 and evaluated in Section 6.

2 Grackle: Strategy Portfolio Invention System

Grackle2 is a generalization of the system called BliStr [31], which is based on the
same evolutionary algorithm motivated in Section 1. BliStr is a strategy port-
folio invention system for automated theorem prover E [28]. Its first successor,
BliStrTune [19], is an extension of BliStr to handle larger strategy space by a
hierarchical strategy invention. The second successor, EmpireTune [18], is an ex-
tension that additionally handles another ATP called Vampire [22]. Therefore,
Grackle is the third successor of BliStr, and apart of the generalization from
E/Vampire to a generic solver, it implements other interesting features. This
section describes the core of the evolutionary algorithm common both to BliStr
and Grackle. Section 3 describes novel features that are specific to Grackle only.

2 https://github.com/ai4reason/grackle
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Algorithm 1: GrackleLoop(S,P, β)

Φstrats ← S // Initialize the state Φ, and set the initial strategies
loop

Evaluate(P, Φ, β) // Evaluate all strategies on P (1)
Φcur ← Reduce(P, Φ, β) // Select the current generation of strategies (2)
s← Select(P, Φ,β) // Select the strategy to improve (3)
if s is None then return Φ // Termination criterion
s0 ← Specialize(s,P, Φ, β) // Improve s on its best problems (4)
Φstrats ← Φstrats ∪ {s0} // Extend the set of strategies

Fig. 1. An outline of the Grackle strategy portfolio invention loop.

Figure 1 outlines the core BliStr/Grackle strategy portfolio invention loop.
The input of the algorithm is a non-empty initial set of strategies S, and the
set of target problems P. The argument β collects additional hyperparameters
detailed below. The variable Φ encapsulates the current state, including, for
example, the set of all strategies invented so far (Φstrats). The state Φ might be
modified during function calls inside the loop, while all the other variables are
immutable (read-only). The current state Φ is also the output of the algorithm.

The loop consists of four basic steps. At first, all the known strategies are
evaluated on all problems P, and the results are stored in the state Φ. In the
second step, a subset of strategies is selected as a current generation (Φcur ), and,
in the third step, one of the strategies (s) is selected for specialization. In the
fourth step, the selected strategy is specialized for a subset of problems using
an external tool for parameter tuning and algorithm configuration. We do not
allow the same strategy to be specialized on the same problems more than once.
Since we consider only finite sets of problems and possible strategies, the loop
must eventually terminate because sooner or later we will run out of strategies
to specialize. In practice, however, we allow the user to set the runtime limit by
the hyperparameter βtimeout . Detailed description of the individual steps follows.

Step 1: Generation Evaluation (Evaluate). In the first phase, all strategies
(Φstrats) are evaluated on all target problems P. This involves running the solver
on each problem with a time limit βeval yielding (1) the overall result (solved/un-
solved) and (2) a number representing the length of the run (runtime). Both the
time limit and the runtime can be specified as a CPU time or as some abstract
time (such as the number of instructions) if that is supported by the solver. This
information is stored in the state Φ to avoid duplicate evaluations.

Step 2: Generation Reduction (Reduce). In the next step, we select the
current generation of strategies Φcur from all strategies Φstrats . First, we compute
for each strategy s its set of best problems Ps, that is, the set of all problems from
P on which s is the best strategy. In the case the best strategy of problem p is not
unique, we randomly select one and mark it as the best. Then we select strategies
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s ∈ Φstrats with at least βbests best-performing problems, that is, with |Ps| ≥
βbests . From the selected strategies, we take only βtops best strategies, where
the strategies are compared by the number of best-performing problems (|Ps|).
The first restriction keeps only well-performing strategies (strong individuals)
and removes redundant strategies (since every solved problem is exactly in one
Ps). The second restriction reduces the count of strategies, keeping the size of
Φcur within the selected bound (|Φcur | ≤ βtops). This prevents invention of a
large number of over-specialized strategies. The function Reduce is depicted in
Figure 4 and further discussed in Section 3.

Step 3: Strategy Selection (Select). The next step is to select a single strategy
for specialization. As a rule, no strategy can be specialized on the same problems
more than once within one execution of the GrackleLoop algorithm. Because
the sets of best-performing problems vary in time, the same strategy can be
improved more than once, but only on different problems. Our default selection
approach is to prefer specialization on diverse problems. Therefore, we prefer
to improve strategies whose best-performing problems have not been used for
specialization very often. In more detail, for each problem p ∈ P, we keep a
problem specialization counter Φspec,p that is increased by 1/|Ps| whenever a
strategy s is specialized on p (that is, when p ∈ Ps). We select the strategy
s with (currently) the lowest average Φspec,p over its best-performing problems
Ps. Ties are broken by higher |Ps|. If no strategy can be selected, the algorithm
terminates. The function Select is depicted in Figure 3 in Section 3.

Step 4: Strategy Specialization (Specialize). In this phase, Grackle invents a
new strategy by specializing on a subset of problems. The strategy specialization
is done by an external parameter tuning software. BliStr uses the ParamILS [17]
automated algorithm configuration framework, while Grackle additionally sup-
ports the SMAC3 [23] framework. The strategy s is always specialized on its best-
performing problems Ps ⊆ P. Given a strategy s and its set of best-performing
problems Ps, the external tuner is launched to find a strategy s0 with an im-
proved performance on Ps. The idea behind this is that s0 will become even
better than s on Ps, and this shall allow additional problems outside of Ps to
be solved. The external tuner is always launched for a specific wall-clock time
limit βimprove . The function Select is depicted in Figure 2 in Section 3.

3 Making the Grackle Fly

This section describes what needs to be done to use the Grackle system and the
main differences between Grackle and other members of the BliStr family. Apart
from generalization to an arbitrary solver, main Grackle features introduced in
this work are alternative methods of strategy selection and generation reduction.
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Solver Wrapper. An improvement of Grackle over BliStr is that Grackle is
a generalization to an arbitrary solver. To use Grackle with a selected solver, a
simple wrapper function must be implemented in Python. This function takes
a single problem filename together with a strategy as arguments and launches
the specified solver strategy on the specified problem. Then, it must process the
solver output and return the result status (solved/unsolved) and performance
measurement. The performance measurement can be an arbitrary number in
selected units, for example, the CPU time in seconds, or any reasonable abstract
performance metric.

Grackle currently implements a solver wrapper for ATP provers E [28], Vam-
pire [22], and Lash [10], and for SMT solvers CVC5 [3] and Bitwuzla [24]. In
this paper, we focus on Bitwuzla which is used for evaluation in Section 5 and
Section 6.

Parametrization of the Strategy Space. Apart from the solver wrapper,
the space of all considered solver strategies must be described. This strategy
space parameterization is passed to one of the supported external parameter
tuners that are used to specialize a strategy to specific problems. As noted
above, Grackle supports ParamILS [17] and SMAC3 [23] frameworks as external
tuners. ParamILS employs an iterated local search (ILS) from the initial strategy,
occasionally perturbing a strategy to escape from a local optimum. SMAC3
is based on Bayesian optimization in combination with an aggressive racing
mechanism to efficiently decide which of the two given strategies performs better.
Both frameworks are capable of finding a strategy that performs well on specific
target problems.

Furthermore, both ParamILS and SMAC3 use a similar mechanism to de-
scribe the space of strategies. Since the mechanism used by SMAC3 is a subset of
the one used by ParamILS, we simply use the ParamILS style to accommodate
both tuners. The strategy space is described by a finite set of parameters, where
each parameter is assigned a finite domain of possible values and the default
value. The strategy space can be additionally pruned by specification of con-
ditional arguments and forbidden values. Conditional arguments specify depen-
dencies among arguments, and forbidden values allow us to specify combinations
of parameter values which are banned in a single strategy. Both frameworks ad-
ditionally require the user to provide a solver wrapper and a performance metric.
These are, however, automatically derived from Grackle’s solver wrapper. Dur-
ing the specialization of a strategy, the external tuner launches the solver with
various strategies. Grackle’s hyperparameter βcutoff controls their runtime.

Parallel Tuner Execution. Both ParamILS and SMAC3 provide partial sup-
port for parallel execution to speed up the tuning. In the case of ParamILS,
multiple independent instances are simply launched in parallel and, thanks to
the randomized nature of the algorithm, each instance traverses the space of
strategies in a different order. Each instance reports its progress as a triple
(s0, q0, n0), where s0 is the best strategy found so far, and q0 is the quality of s0
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based on evaluation on n0 problems. The number n0 only increases over time as
new results are acquired. Finally, we select the strategy with the best quality q0
among the different parallel runs.

SMAC3 provides similar, but improved, support for parallelization. Again,
multiple instances are launched in parallel, but the instances share a common
database of results and thus avoid duplicate solver evaluations.

The external tuner, called to specialize strategy s, is always launched with
the wall-clock time limit specified by Grackle’s hyperparameter βimprove . This
time limit is fixed and does not reflect the size of the set of problems used for
the specialization (Ps). It can be expected that with smaller problem sets, the
tuner can be launched with smaller time limits and still achieve equivalent re-
sults. Therefore, Grackle additionally implements the ParamILS extension with
restarts and automated termination. We call this extension ResParamILS.

In ResParamILS, multiple ParamILS instances are launched in parallel with
the same initial strategy s and the set of target problems Ps. ResParamILS keeps
checking the progress of individual instances and waits for the first ParamILS
instance to report a strategy s′ evaluated on all problems Ps. That is, it waits for
some instance to report a triple (s′, q′, n′) where n′ = |Ps|. Then ResParamILS
enters a stabilization phase and waits for t seconds, where t is the wall-clock time
elapsed so far. This stabilization phase allows other instances to evaluate the
best strategy on all problems Ps. Then, only the best ParamILS instance is kept
running while the other instances are terminated. The terminated instances are
then restarted with the best strategy s′ found so far as the initial configuration,
but keeping the initial set of problems Ps. This process is then iterated and ends
when the quality of the best strategy stops improving, that is, when no better
strategy can be found. In this way, ResParamILS tries to detect a plateaued
state. The hyperparameter βimprove can be still used as an overall tuning limit.

BliStr does not support parallel execution of the tuner. It was first added
in BliStrTune but without ResParamILS. ResParamILS was already partially
implemented in EmpireTune, but without any evaluation. Grackle is the first
system of the BliStr family to support SMAC3. The number of parallel runs in
Grackle is controlled by the hyperparameter βcores .

Strategy Selection Mechanisms. As described in Section 2, we prefer spe-
cialization to problems that have not been used very often for specialization.
This is implemented by keeping a global problem specialization counter Φspec,p

for every problem p. This counter is initialized to zeros and is updated with
every call to the function Specialize, as described in the Figure 2.

When selecting the strategy to be specialized, the strategies are compared
by averaging problem specialization counters over the best-performing problems
Ps. For each strategy s, we compute the average problem specialization index
Cs as described in Figure 3. Since we prefer problems that are not often used for
specialization, we prefer smaller values of Cs. Grackle provides several ways to
use this index to select the strategy to specialize.
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Function Specialize(s,P, Φ, β)

Ps ← {p ∈ P | s is the best strategy on problem p among strategies Φcur}
s0 ← ExternalTuner(s,Ps, βcutoff ) // launch the external tuner
for p ∈ Ps do // update the problem specialization counters Φspec

Φspec,p ← Φspec,p + (1/|Ps|)
return s0

Fig. 2. Specialize the strategy s on its best problems Ps ⊆ P.

Function Select(P, Φ, β)

for s ∈ Φcur do
Ps ← {p ∈ P | s is the best strategy on problem p among strategies Φcur}
Cs ← (

∑
p∈Ps

Φspec,p)/|Ps| // average problem specialization counters

Qs ← (Cs,−|Ps|) // quality pairs are compared lexicographically

S ← {s ∈ Φcur | s has not been specialized on Ps yet} // skip already done
return arg mins∈S Qs

Fig. 3. Select the strategy to be specialized.

Default mode. The default selection mode is the selection mechanism from BliStr,
where the strategies with lower Cs are preferred. In the case of equal values, which
happens always in the first iteration as the counters are zeroed, the strategies
are compared by their performance, that is, by |Ps|. In the algorithm, this is
implemented by constructing the quality pair Qs = (Cs,−|Ps|). The quality
pairs are then compared lexicographically, and the strategy s with the lowest
Qs is selected for specialization. Since the size of Ps is reversed in Qs, we prefer
stronger strategies in the case of equal values of Cs. In particular, in the first
iteration, the strongest strategy s will be specialized. The default mode is the
only strategy selection implemented in BliStr.

Reverse mode. In practice we often observe that strong strategies are born out of
weak ones. Therefore, Grackle additionally provides a way to begin the specifica-
tion with the weakest strategy. In the reverse selection mode, this is implemented
by using ‘arg max’ instead of ‘arg min’ in the last line of function Select.

Weak mode. The reverse mode, however, prefers specialization on problems al-
ready used for specialization, because it prefers higher values of Cs in the first
element of a quality pair Qs. Therefore, we implement the weak selection mode
which uses ‘arg min‘ as in the default mode, but it constructs the quality pair
Qs as Qs = (Cs, |Ps|). In this way, we prefer weak strategies, but we still prefer
problems not often used for specialization.

Random mode. Grackle additionally implements a random selection mode where
the strategy is selected randomly.
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Function Reduce(P, Φ, β)

G ← Φstrats // start with all strategies known so far
for s ∈ G do // compute the best problems for every strategy
Ps ← {p ∈ P | s is the best strategy on problem p among strategies G}

G ← {s ∈ G | if |Ps| ≥ βbest} // keep only strong individuals
G ← [s ∈ G | sort G by decreasing |Ps|] // list strategies sorted by performance
G ← {s | s is among the first βtops strategies in G} // keep only best strategies
return G

Fig. 4. Selection of the current generation of strategies.

Evaluation. All Grackle ancestors support only the default selection mode. The
various Grackle selection methods are experimentally evaluated in Section 5.

Atavistic and Non-Atavistic Modes. In genetics, atavism is a recurrence of
a trait typical for ancestors but not apparent in the current generation. In our
context, it can happen that a strategy disappears from the current generation
Φcur but suddenly reappears in one of the following iterations. This happens
due to the selection of the current generation in the function Reduce depicted
in Figure 4.

In BliStr and other Grackle ancestors, the current generation is selected out
of all known strategies Φstrats . Strategies are filtered by their performance |Ps|
using hyperparameters βbest and βtops . Note that Ps in Reduce is computed
with respect to all strategies Φstrats , while in functions Select and Specialize it
is computed with respect to the current generation Φcur only. Since the count
|Ps| can only decrease during the execution of the Grackle loop, a strategy once
rejected due to the limit βbest can never reappear in future generations. However,
a strategy rejected due to the limit βtops can appear in a future generation
because the order of the strategy can change. This behavior, called atavistic, is
the behavior implemented in BliStr.

Grackle additionally supports a non-atavistic behavior, where the next gen-
eration is selected out of the strategies of the previous generation. This is im-
plemented by setting G to Φcur instead of Φstrats in the first line of Reduce.
Furthermore, Φcur is initialized with the initial strategies, and any specialized
strategy (any output of Specialize) is always added to the current generation.

4 Strategy Selection with Boosted Decision Trees

Given a large portfolio of strategies obtained by running Grackle, we want to
select the best strategy for every problem within the given benchmark set. We
achieve this by training a ranking model to rank strategies using features ex-
tracted from the problem in question. Then, for an arbitrary input problem, we
run the strategy that has the highest rank according to the trained model.
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Feature Extraction. We use a simple Bag of Words (BOW) as a feature repre-
sentation of each problem/formula. To compute this representation, we parse the
given formula and compute the counts of every unique word. The set of possible
words consists of logical operators of the SMT language together with keywords
of the given logic. We ignore the concrete names of variables and functions and
the concrete values of constants. For example, we do not count how many times
a concrete value (such as 1) appears within the formula. Instead, we count the
number of occurrences of any constant of a given type (i.e., an integer numeral).

Given a fixed order of the possible words which could appear in an SMT
formula, the BOW representation of the formula is a vector in which the n-
th element represents how many times the n-th possible word appears within
the formula. If we combine multiple logics together, then for a concrete problem
(belonging to a specific logic), most of the possible words will not be used and the
feature vector will be sparse. Therefore, we reduce the dimension of these vectors
by Principal component analysis (PCA), and for any new problem, we project
its original feature vector to the obtained principal vectors. The simplicity of
the feature extraction phase results in a negligible computation time, which is
crucial in the setting we are interested in.

Strategy Ranking. To select the strategy on a per-instance basis, we train
a ranking model that takes the extracted feature vector and a categorical vari-
able whose possible values correspond to different strategies as input. The model
outputs the rank of the strategy for the given problem. For every new problem,
we select the strategy with the highest rank. As a ranking model, we use Light-
GBM [20] with a default setting and the LambdaRank [11] objective function
and train it for 1000 iterations3.

We follow two different procedures when creating labels for the training
dataset, depending on the timeout parameter. When the timeout is small (1 s in
our case), we set the rank of a given strategy to 1 or 0 depending on whether
the strategy solves the given problem before the timeout or not, respectively.
When the timeout is set to higher values (10 s or 60 s in our case), we divide
the timeout into five intervals and set the rank of the strategy according to the
interval in which it solves the problem. Concretely, if the strategy does not solve
the problem before the timeout, we set its rank to 0. If it solves the problem
during the last interval (whose endpoint corresponds to the timeout), we set its
rank to 1 and so on, until the first interval, which corresponds to a rank equal
to 5. In simple words, a shorter solving time corresponds to a higher rank.

For the case of longer timeout (10 s or 60 s), it holds that for any given strat-
egy, the solving times are not distributed uniformly, as can be seen in the lower
right part of Figure 5 that contains a histogram of the solving times under 60
seconds. The histogram shows that the solving times follow an exponentially de-
creasing trend. To counteract this nonuniform distribution, we set the endpoints

3 We also tried to use a Graph Neural Network which processed formulas represented
as directed acyclic graphs but LightGBM ranking with BOW representation provided
the best tradeoff in terms of accuracy and speed.
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of the intervals according to a power function. That is, we set the endpoint of
an interval n to np for some p ∈ R. If we want to have N intervals in total, p
is chosen so that Np = timeout. For example, N = 5 and timeout = 60 yield
p = log5(60) ' 2.54 and interval endpoints: (1, 5.8, 16.3, 34, 60).

The rationale behind the different treatment of the labels for the case of the
longer timeout (10 and 60 seconds) is that it may be easier for the ranking model
to distinguish whether the strategy solves the problem in 1 second or 30 seconds
compared to whether it solves it in 200 milliseconds or 600 milliseconds. In our
experiments, having multiple ranks for a longer timeout led to better results.

Another option to obtain the ranks of the strategies would be to sort the
strategies by solving time and set the rank of each strategy to its order. This
would be harder to learn because the prediction would need to be more precise.

5 Evaluation of Grackle Strategy Invention

In this section we experimentally evaluate Grackle strategy invention on an SMT
solver Bitwuzla, and on a benchmark of 3000 problems used in the SMT com-
petition in 2021. Bitwuzla’s configuration used in the SMT competition is called
smt-comp-mode and it serves as a baseline in our experiments.

We select the benchmark problems as follows. In the competition, Bitwuzla
was launched with 13605 problems and solved 13291 while only 342 problems
were not solved. The time limit per problem in the SMT competition was 20
minutes. First, we include all 342 unsolved problems in our benchmark. Next,
we remove all problems with runtime smaller than 100 ms to filter out trivial
problems. From the remaining problems, we randomly select 2658 problems to
obtain the set of 3000 benchmark problems. This set is divided into 2000 training
and 1000 testing problems. All experiments in this section are performed with
the 2000 training problems, while the testing problems are used for the final
evaluation in Section 6.

To use Bitwuzla with Grackle we need to parametrize the strategy space.
We manually select 39 parameters and their domains based on our intuition.
We have 28 boolean parameters, and the overall size of the strategy space is
about 1015. To test the parametrization, we launch several instances of SMAC3
without using Grackle. This gives us 20 Bitwuzla strategies that we use as the
initial strategies for all Grackle runs described below. During tuning, Bitwuzla is
always launched with a 1 second time limit per problem. The best of the initial
strategies solves 964 (out of 2000) training problems with 1 second time limit,
while Bitwuzla’s smt-comp-mode solves 906. The union of problems solved by all
initial strategies is 1345.

The first experiment tests different external tuners supported by Grackle,
that is, SMAC3, ParamILS, and ResParamILS (see Section 3). We launch one
Grackle instance for each tuner with the runtime limit of 24 hours and with 8
cores per instance. The tuning time for one specialization is set to 5 minutes
(βimprove). Individual Bitwuzla runs are limited to 1 second, both during eval-
uations (βeval) and specializations (βcutoff ). We use the non-atavistic behavior,
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tuner
solved specializations runtime [hh:mm]

termination
total new success all eval. spec. total

SMAC3 1449 104 28 128 01:29 10:45 12:15 regular

ParamILS 1459 114 161 186 08:07 15:35 23:56 timeout

ResParamILS 1452 107 194 211 09:58 13:39 23:56 timeout

Table 1. Evaluation of external tuners supported by Grackle.

and we restrict the size of the current generation to 30 (βtops). We require every
strategy to outperform other strategies in least at 3 problems (βbests).

The results are summarized in Table 1. The column total describes the num-
ber of problems solved by all invented strategies, and the column new shows
how many of them are not solved by the initial strategies. The column success
presents the number of strategies invented by specialization, that is, the count
of successful specializations. It can happen, that the outcome of a specialization
is some strategy that is already known, that is, Specialize(s,P, Φ, β) ∈ Φstrats , in
which case we consider the specialization as a failure. The column all shows the
total number of specializations performed, including failed ones. The columns
runtime describe Grackle run times in hours and minutes. First two columns de-
scribe the time used for evaluations (eval.) and the time used for specializations
(spec.). The total runtime additionally covers time used for the reductions and
selections of the strategies. The last column describes whether Grackle termi-
nates because no strategy can be specialized or because of the timeout.

First, we observe that the numbers of solved problems are quite similar.
We can see that SMAC3 specializations failed much more often. It seems that
SMAC3 tends to return the input strategy unless it finds a strictly better one.
On the other hand, this happens rarely with ParamILS, where the local search
deviates from the initial input strategy quite early. Due to that, ParamILS and
ResParamILS managed to invent more strategies, which is a behavior favored
by Grackle. Furthermore, the results of ParamILS and ResParamILS can be
improved by extending the time limit. We also see that ResParamILS was able
to perform more iterations with quite a smaller specialization runtime. This is
thanks to its automated termination feature.

While SMAC3 invents 28 strategies, only 20 are needed to cover all solved
problems. For ParamILS, this is 21 and for ResParamILS it is 20. From this
we can conclude that the invented strategies have a similar strength. Recall
that the initial strategies solve 1345 problems. The total number of problems
solved by all three runs together is 1481. This means that different tuners invent
complementary strategies and that there is no clear winner among the tuners.

In the second experiment, we test different strategy selection and reduction
modes from Section 3. Here, we restrict our attention to ResParamILS. We test
atavistic and non-atavistic behaviors, combined with three modes of strategy
selection (default, reverse, weak). This gives us six different Grackle runs. Oth-
erwise, we use the same Grackle hyperparameters as in the first experiment.
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atavistic solved specializations runtime [hh:mm]
termination

selection total new success all eval. spec. total

no default 1452 107 194 211 09:58 13:39 23:56 timeout

no reverse 1472 127 220 237 12:11 11:22 23:58 timeout

no weak 1429 84 160 174 09:28 14:17 24:00 timeout

yes default 1463 118 199 208 09:57 13:42 24:00 timeout

yes reverse 1425 80 196 212 11:27 12:08 23:55 timeout

yes weak 1421 76 169 195 09:11 14:32 23:58 timeout

Table 2. Evaluation of selected strategy selection modes.

The results are presented in Table 2. The first row is the same as the
ResParamILS row from the first experiment. We can see that the reverse se-
lection with the non-atavistic behavior solves most problems and invents most
strategies. It performs quite differently with the atavistic behavior, where it
solves fewer problems even though it invents a large number of strategies. This
suggests that the atavistic mode favors the invention of redundant strategies.
The weak selection solves the least problems, but it spends the most time by
specializations. The total number of problems solved by all six runs is 1500. This
again suggests that there is a certain complementarity among the methods.

6 Evaluation of Strategy Selection

In the last Section 5 we have described 9 different Grackle runs. We addition-
ally perform several Grackle runs with different hyperparameters, for example,
increasing the Bitwuzla time limit to 5 seconds (βeval and βcutoff ). Together,
we collect more than 5000 different Bitwuzla strategies, and by iterative greedy
cover construction, we select 140 complementary strategies. We evaluate these
strategies on the training problems with a 60 second time limit per problem
and strategy. This gives us training data for a strategy selector that attempts to
select the best strategy for a specific input problem.

While it often makes sense to alternate several strategies within a given time
limit, in our context of quantifier-free bit vectors, it is often best to select a
single strategy and run it exclusively until the time limit is reached. Therefore,
we attempt to construct the selector of a single strategy. We focus on smaller
time limits (below 1 minute), because we develop methods for a machine-human
interaction, keeping in mind limited time resources and impatience of human
users. In particular, we test the strategy selection with 3 different time limits (1,
10 and 60 seconds). The selectors are evaluated on the 1000 testing problems.

To evaluate the selector, we count the number of solved problems for a given
timeout and compute the PAR-2 score (Penalized Average Runtime) commonly
used to compare different solvers. The score is the sum of the runtimes of solved
problems plus twice the timeout for each unsolved problem. The qualitative
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Fig. 5. Top left, top right, bottom left : Cactus plots for different timeouts (1s, 10s, and
60s, respectively). The plot shows a comparison of our approach against the virtual best
strategy (VBS), the baseline smt-comp-mode strategy, and the best invented strategy
from the portfolio. Bottom right : Histogram of solving times of one selected strategy.
The bar at 60 seconds corresponds to unsolved problems.

and quantitative results can be seen in Figure 5 and Table 3, respectively. We
compare the strategy selector with the default smt-comp-mode strategy, the
best strategy from the invented strategies, and the virtual best strategy. The
virtual best strategy is a hypothetical selector which would always pick the best
performing strategy. The results show that the gain is largest when the time limit
is small and there is a substantial gap between the best performing strategy and
the virtual best strategy. We observe the clear superiority of our selector.

7 Conclusions and Future Work

We have presented a method for the automated configuration of automated
reasoning solvers for specific target problems. We have evaluated the method on
the SMT solver called Bitwuzla by targeting the solver to a subset of SMT-LIB
benchmarks. We have invented a large amount of Bitwuzla strategies using the
Grackle system, that is described for the first time in this work. We have achieved
a substantial improvement over the default Bitwuzla mode. The strength of our
system is that it both invents new strategies as well as selects the best one to
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time limit
solved by best strategy our selector solved by

smt-comp-mode solved PAR2+ solved PAR2+ VBS

1s 460 541 13.59% 689 39.92% 746

10s 813 840 16.38% 873 50.50% 929

60s 938 945 19.04% 956 46.76% 971

Table 3. Results of the evaluation. VBS stands for virtual best solver. PAR2+ is a
relative improvement of the PAR-2 score to the score of smt-comp-mode in percent.

be used on a given problem. To the best of our knowledge, this is the first time
such approach was applied to an SMT solver.

For future work, we would like to inspect alternative methods of strategy se-
lection and generation reduction in Grackle. For example, Grackle also supports
the specialization of a strategy s on unsolved problems by interleaving the best
problems Ps with similar but unsolved problems. This feature has not yet been
tested. Additionally, we would like to test our methods on other solvers and to
construct strategy schedules that alternate execution of multiple strategies.
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