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Abstract—This paper develops an approach to the scheduling
of solvers in the domain of Satisfiability Modulo Theories (SMT)
using a Graph Neural Network (GNN). In contrast to related
methods, GNNs do not require manual feature design as they
enable discovering relevant features in the raw data. We train
them to predict the effectivity of individual solvers on a given
problem. Rather than choosing only one solver with the best
prediction, we schedule the solvers by ordering them according
to the predicted runtime and dividing the overall runtime into all
solvers uniformly. We compare our approach to several baselines.
In the selected benchmarks, we show a substantial improvement
over these baselines in terms of the number of solved problems
and overall solving time.

I. INTRODUCTION

In recent years, there has been a lot of interest in the
use of machine learning (ML) for problems dealing with
combinatorial search. Such problems are known to be NP-
complete or harder, and typically there is no single best
algorithm to deal with them. Instead, various algorithms
behave differently on different problem distributions. For a
given problem distribution, we can settle with a single best-
on-average algorithm or try to choose the best one from a
portfolio on a per instance basis.

The previous statement also holds in the domain of Satis-
fiability Modulo Theories (SMT). Different heuristics used in
individual solvers or their configurations may produce differ-
ent per-instance behaviour in terms of runtime or even in the
ability to find a successful solution. For that reason, there has
been an interest to design portfolios of solvers together with
predictors which select a solver. This per-instance behaviour
is hard to understand for a human, but we may try to predict
it using ML methods. These predictors are conditioned on
various features of the SMT formula.

In the past, most of the approaches have been based on
manually designed features which reflected the intuition of a
domain expert. These features can vary from very complex,
such as the ones given by linear programming relaxation
of the formula, or various runtime statistics of a particular
solver [1], to very simple, such as counts of occurrence of
various symbols within the formula [2].

Instead of designing better features, we follow the recent
trend of learning features from raw data together with the
predictions in an end-to-end fashion. In our case, we use
a Graph Neural Network (GNN) [3] that takes as input an
SMT formula graph representation and predicts the efficiency

of available solvers. Using the predictions from the GNN,
we construct a schedule which runs individual solvers until
a timeout or solution is reached. We compare our approach
to several baselines and show an substantial improvement in
terms of the PAR-2 score.

We also demonstrate a significant drawback of choosing
only the solver with the best prediction, which was done in
a previous work [2], by showing that it is outperformed by a
random schedule which splits the time across the individual
solvers and runs them in an random order.

To summarize, the paper has the following main contributions.
• It applies GNN to predict the performance of SMT

solvers on a given instance. To the best of our knowledge,
this is the first application of GNN in the context of SMT.

• The proposed approach schedules the solvers rather than
just picking the best one, which further improves the
robustness of the approach.

II. SATISFIABILITY MODULO THEORIES

Solvers for Satisfiability Modulo Theories (SMT) are the
driving force behind software verification, software testing, or
software synthesis, among others [4]–[7]. These applications
often require repeated queries to an SMT solver. This means
that quick response times of the solver are paramount.

An SMT solver receives as input a formula and responds
if it is satisfiable or not. Since the problem is generally
undecidable, solvers often timeout or give up.

The language and the semantics of the given formula
depends on the theories being used (such as theory of non-
linear integer arithmetic) and are standardized in the SMT-LIB
standard [8].

Various SMT solvers support various theories and their
combinations. Furthermore, not all solvers support all the
features of the SMT language. This alone makes the choice
of the right solver for a given instance a nontrivial task.

III. PROBLEM STATEMENT

Let S = {s1, . . . , sl} be a set of l SMT solvers which
we have at our disposal. Our goal is to produce an effective
algorithm which on per-instance basis creates a schedule from
the set S.

More formally, we want to obtain a function fθ
(parametrized by learnable parameters θ) which takes a rep-
resentation of an SMT formula q and the set S as an input



and outputs an ordered tuple fθ(q, S) = ((i1, t1), . . . , (in, tn))
where ij’s are indices of selected solvers and tj’s are times
assigned to these solvers, such that

∑
j tj = tmax, where tmax

is the maximum time we are willing to spend on a problem.
In other words, for a given formula q, fθ(q, S) represents a
schedule of chosen solvers for this formula.

Given a formula q and its schedule fθ(q, S), we measure
how long it takes to solve the formula using this schedule.
We denote this measurement by M(q, fθ(q, S)) and set it to a
constant number tpen (with tpen > tmax) if the formula was
not solved under the time limit tmax.

We assume that the problems/formulas we want to solve
come from an unknown distribution P and that we have a
finite set of independent and identically distributed samples
Q = {q1, . . . , qm} where qi ∼ P . Our task may be posed as
the following optimization problem:

θ∗ = argmin
θ

∫
M(q, fθ(q, S)) dP (q)

Because the distribution P is unknown, we can only try to
minimize an approximation to the objective function given by
the m samples in Q:

θ̂∗ = argmin
θ

1

m

∑
qi∈Q

M(qi, fθ(qi, S)). (1)

The empirical objective function 1
m

∑
qi∈QM(qi, fθ(qi, S))

can be also used to compare different scheduling functions fθ.
The learnable parameters of this function cannot be directly
optimized with respect to the objective function by gradient-
based methods, because it involves discrete choices. We will
therefore construct the function fθ in two stages, by first
learning to approximate the runtimes of individual solvers
conditioned on the problem and then constructing the final
schedule based on the predicted runtimes.

IV. GRAPH NEURAL NETWORKS

GNNs are neural networks which process inputs structured
as a graph. For this reason, GNNs became popular for process-
ing all kinds of formal structures such as logical expressions,
which are naturally represented as trees or directed acyclic
graphs.

Additionally, meta-information for nodes can be encoded as
a feature vector of a fixed size. In our case, we encode the
symbols used within the expression. For the sake of keeping
the alphabet small, we abstract away specific numeric values
of variables and function names and encode the resulting
symbols as one hot vectors. Those representations serve as
initial feature vectors for nodes.

Each layer of a GNN updates the feature vectors of all
nodes by transforming and aggregating the feature vectors of
its neighbour nodes.

Let G = (V,E) be a graph with a feature vector xv
assigned to each node (xv ∈ Rm where m is the length of the
alphabet of possible symbols). Furthermore, let N(v) denote
the neighbourhood of a node v, i.e. the set of all nodes adjacent
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Fig. 1. Evaluation of the GNN on an input graph to obtain a single feature
vector. The vectors highlighted in red are the once being aggregated.

to v. In each propagation step k = 1, 2, 3 . . . , a new feature
vector h(k)v (s.t. h(0)v = xv) is computed in the following
way [9]:

a(k)v = AGGREGATE(k)
({
h(k−1)u | u ∈ N(v)

})
h(k)v = COMBINE(k)

(
h(k)−1v , a(k)v

)
Often these two steps are integrated and the aggregation is

done over N(v) ∪ {v}. For example, a simple node update
rule used in the basic Graph Convolutional Network model
(GCN) [10] has the following form:

h(k)u = σ

W (k)
∑

v∈N(u)∪{u}

h
(k−1)
v√

|N(u)||N(v)|


The matrix W (k) ∈ Rdim(hk

u)×dim(hk−1
u ) contains trainable

parameters, the square root in the denominator scales the
vectors according to a degree of the respective node, and σ
is the application of a non-linear activation function (such as
ReLU). We stress that W (k) is shared by all nodes in layer
k but may differ across layers, allowing successive change of
feature vector sizes.

In our initial experiments, we tried more advanced architec-
tures, but in the final implementation we use the basic GCN
described above because it produced no or only negligible
improvements. GNNs can either be used to produce node-level
predictions or graph-level predictions. In the case of graph-
level predictions, we have to aggregate the feature vectors for
every node within a graph to one output feature vector, which
is then used to make the final prediction.

The process for obtaining one feature vector from the input
graph is depicted in Figure 1. For the final prediction, we use
a simple Multi-layer perceptron and train the whole network
using backpropagation. In our case, we train the network to
predict the runtimes of individual solvers.

The advantage of using a GNN is that processed graphs are
allowed to be of different size, as transformations are applied
locally and aggregation operator does not require a specific
number of inputs.
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V. SOLVER SCHEDULING

As mentioned in Section III, we aim to obtain a problem-
dependent scheduler that minimizes Equation 1. The objec-
tive function in Equation 1 cannot be optimized directly by
gradient-based methods, and therefore we solve the problem
in two stages. First, we train our GNN to predict the runtimes
of individual solvers and then create a schedule based on these
predictions.

In our experiment, we tested a very simple schedule which
divides the overall runtime into all solvers uniformly and
orders the solvers according to the predicted runtimes. We
also tried to schedule the solvers with times proportional to
the predicted runtimes but this did not lead to a significant
improvement and therefore we report the results for the
simpler schedule.

VI. EXPERIMENTS

A. Datasets

We test our approach and the other baselines on 4 represen-
tative benchmarks. As our goal is to show that we can improve
upon the best individual solver and the other baselines on a
given benchmark, we choose benchmarks with a noticeable
gap between the best individual solver and the virtual best
solver. The virtual best solver represents an upper bound of
what could be achieved. It simply selects the best solver for
each problem independently. When selecting the benchmarks,
we have also taken into consideration the number of problems
on a benchmark because our GNN contains a large number
of learnable parameters and therefore could overfit on small
datasets. A summary of the chosen benchmarks follows.
QF-NRA Is the logic of non-linear real arithmetic with-
out quantifiers (QF stands for quantifier free). It involves
arithmetic operations on real numbers. Since it is non-linear
multiplications between two unknowns are allowed.
UFNIA The logic combines two theories, uninterpreted func-
tions (UN) and non-linear integer arithmetic (NIA). The for-
mulas may contain quantifiers. The logic is highly useful in
software verification but at the same time is undecidable.
UFNIA-CONF It is customary that in competitions solvers
run multiple strategies in sequence to tackle any given prob-
lem. This is especially true for formulas containing quantifiers
where a number of different approaches exist, which exhibit
strong degree of orthogonality [11]. To further diversify our
experimental results, we have collected the different strategies
that the solver CVC5 uses to solve UFNIA formulas in the
competition.1

B. Data processing

For the processing of individual SMT formulas, we used the
PySMT library [12]. Concretely, we used the built-in SMT-LIB
parser and our custom printer which outputs the formula as a
directed acyclic graph (DAG) with nodes labeled by possible
symbols. The alphabet of possible symbols is handled by

1https://github.com/cvc5/cvc5/blob/master/contrib/competitions/smt-comp/
run-script-smtcomp-current

Benchmark name # of problems # of solvers Timeout (s)
QF NRA 2654 9 2400
UFNIA 5659 7 2400
UFNIA-CONF 5659 23 60

TABLE I
NUMBER OF PROBLEMS AND SOLVERS PER BENCHMARK.

PySMT, which abstracts away details such as function names
or specific numeric values. To create the final form of the
graph which goes as an input to the GNN, we augment the
DAG we obtain from PySMT with edges going backwards.
That is, for every edge (a, b) we add edge (b, a) to the graph.
This process is depicted in Figure 2.

C. Training the GNN

We collect all examples on a given benchmark and split
them into training and testing samples as described in the next
section. When searching for hyperparameters, we set aside
15% of the training set and use it as a validation set.

As a loss function for training, we use a l2 loss and
rescale the ground truth times using a logarithm of base 2. As
mentioned previously, we used GCN for our experiments. We
set the number of graph convolutional layers to k = 6 and the
hidden representation vector size to 150 for all of them with
exception of the final GCN layer size set to 700. To aggregate
feature vectors from all nodes into one feature vector, we use
the max aggregation operator. It takes element-wise maximum
across all feature vectors. This feature vector goes as an input
to a 2-layer MLP with the size of the hidden layer equal to
350. The output size is equal to the number of solvers on a
given benchmark.

To optimize the weights of the network, we use the ADAM
optimizer [13] with the learning rate set to 0.001 and a batch
size of 16.

D. Evaluation protocol

For the evaluation of individual models, we run the same
procedure as Scott et al. [2]. That is, we shuffle the dataset
and split it into training and testing subsets five times (K =
5) so that 80 % of the data is used for training and 20 % is
used for testing. This is the same procedure as used in K-fold
cross-validation. Testing sets from all 5 folds are disjoint and
cover the whole dataset. For each fold, the model is always
initialized with random weights, trained for 100 epochs and
then evaluated on the respective testing set. This ensures that
we obtain predictions for every problem within the dataset.

To compare individual solvers and schedules, we compute
their PAR-2 score. This score is the sum of runtimes over all
problems within the dataset. For problems that are not solved,
the runtime is set to twice the timeout. To compute the runtime
for various schedules, we iterate over individual solvers within
the schedule and check if the problem would be solved by the
given solver within the interval dedicated to it. If the problem
is solved by the n-th solver within the schedule by using time
t of its current interval and the length of each previous interval

3

https://github.com/cvc5/cvc5/blob/master/contrib/competitions/smt-comp/run-script-smtcomp-current
https://github.com/cvc5/cvc5/blob/master/contrib/competitions/smt-comp/run-script-smtcomp-current


AND

GEQ

NOT

VARIABLE

CONST_RATIONAL

GEQ

MULT

CONST_RATIONAL

AND

GEQ

NOT

VARIABLE

CONST_RATIONAL

GEQ

MULT

CONST_RATIONAL

(set-info :smt-lib-version 2.6)
(set-logic QF_NRA)
(set-info :category "crafted")
(set-info :status sat)
(declare-fun a () Real)
(assert (and (›= a 3) 
  (not (›= (* a 2) 3))))
(check-sat)
(exit)

Fig. 2. The steps conducted during the creation of the input graph from a given SMT formula. Parsing yields a directed graph, which is then augmented by
edges going in reverse direction. Finally, symbols on nodes are encoded to one-hot vectors.

i would be si, we would set the runtime to t +
∑n−1
i=1 si. If

the problem is not solved by any solver within the interval
dedicated to it, we set its runtime to twice the timeout.

E. Description of the tested approaches

The results for the following baselines and our approach are
presented in the Table II.
Best solver. Is a single solver with the best PAR-2 score. We
present our results as an relative improvement over the best
solver.
Virtual best solver (VBS). This is a hypothetical algorithm
that selects the best solver for each problem separately. It
represents an upper bound for a possible improvement.
BOW-single and GNN-single. These two baselines choose
the best solver according to the predictions of the model and
run it until the timeout. They differ only in the ML model.
Both models are trained to regress the ground truth runtimes
and we select the solver with the shortest predicted runtime.

BOW-single uses a model similar to the one used in
MachSMT. It uses bag-of-words features, which contain the
counts of each symbol within the formula. Depending on the
benchmark, the size of the feature vector is in the range 12–20.
For the regression, we use LightGBM [14] and a grid search
to find suitable hyperparameters.

GNN-single uses the same model described in the Sec-
tion VI-C.
Random schedule. Random schedule divides the whole
available time to all available solvers and runs them in a
random order. We found out that for 2 of the tested benchmark
sets, this simple schedule outperforms the approach which
selects only the solver with the best prediction. This shows
serious drawbacks of the results presented in MachSMT and
also the importance of scheduling more solvers. Random
schedule is effective because many problems are solved in
a short time by at least one solver.
Solver ordering (GNN). An improvement over choosing
only the predicted best solver is to choose k best solvers
and split the available time across them. In the extreme case,
we can choose all available solvers, split the available time
across them uniformly, and order them by the predicted time
starting with the solver with the shortest predicted time. For
the predictions, we use the same model as in GNN-single.

Benchmark QF-NRA UFNIA UFNIA-CONF

Best Solver solver Z3 CVC4 -
solved 2120 3093 2494

VBS solved 2516 3339 3118

BOW single PAR-2 impr. 117.10% -0.64% 0.32%
solved 2343 3074 2586

GNN single PAR-2 impr. 231.19% 1.8% 56.73%
solved 2403 3085 2644

Random schedule PAR-2 impr. 269.33% -21.62% 69.59%
solved 2494 3053 2812

Solver ordering PAR-2 impr. 913.05% 8.30% 88.59%
solved 2494 3053 2812

TABLE II
COMPARISON OF EVALUATED APPROACHES. THE PAR-2 IMPROVEMENT IS

RELATIVE TO THE BEST SOLVER.

F. Results

The results of our experiments are visible in the Table II.
The PAR-2 improvement is relative to the best solver and it
takes into consideration only the problems which were solved
by at least one solver. Our schedule clearly outperforms the
other approaches. We can also notice that for QF-NRA and
UFNIA-CONF, the random schedule outperforms GNN-single
and BOW-single, which demonstrates the importance of a
schedule.

VII. RELATED WORK

Algorithm selection and scheduling [15] is recognized as an
important topic as a consequence of the need for reliable and
fast problem handling in practical applications. Using machine
learning methods for selection of a solver from a portfolio
was popularized by Leyton-Brown et al. [16]. In the literature,
models which predict the runtime of individual algorithms are
usually called Empirical Hardness Models [17].

In terms of the goal and used benchmarks, our work is
most similar to MachSMT [2]. The main difference is that
they try to select only one solver from the whole portfolio
and use bag-of-words as the representation of a formula. We
found out that in many cases, the best solver according to the
prediction of the model does not solve the formula at all and
that schedules, including the random one, work better. We also
train the feature extraction together with the final regressor
end-to-end, and therefore our approach may discover more
complex and useful features.

There are many other approaches that demonstrate the
possibility of using Graph Neural Networks to extract the
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features of various formulas and learn the final prediction in
an end-to-end fashion. In the domain of SAT solvers, Selsam
et al. [18] train a GNN to predict the satisfiability of a formula.
The trained network can later be used to find a solution for new
formulas. The same problem is studied by Cameron et al. [19]
who used different architectural choices for the GNN. In the
following work, Selsam et al. uses a GNN to guide a SAT
solver [20]. The GNN was trained to predict the unsatisfiable
core of a given formula and these predictions were then used
for variable selection inside the SAT solver. Wang et al. [21]
use a GNN to embed and predict the relevance of logical
formulas in the task of premise selection.

For an overview of various use cases of ML methods for
combinatorial problems and algorithm selection, see the fol-
lowing survey papers: [22]–[24]. For a more specific overview
focused on GNNs see [25].

VIII. CONCLUSION

This paper presents an application of GNNs for SMT
solver scheduling. We showed that GNNs can be successfully
used as Empirical Hardness Models. Their main advantage,
in comparison to other ML methods, is that they can be
used without manual feature engineering. We also showed
the benefits of using a schedule. In our experiments, we
compared our approach to several baselines and demonstrated
significant improvements in terms of the number of solved
problems and overall solving time. In future work, we plan
to focus on meta-learning of GNNs to quickly adapt to
new problem distributions and on the augmentation and sub-
sampling strategies for individual formulas.
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