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Intro: QBF, Expansion, Games,
Careful expansion



SAT and QBF

• SAT — determine if a formula is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)
• QBF — for a Quantified Boolean formula

• Example: ∀x∃y. (x ↔ y)

• Quantifications as shorthands for connectives
(∀ = ∧, ∃ = ∨)

Example:

1 ∀x∃y. (x ↔ y)
2 ∀x. (x ↔ 0) ∨ (x ↔ 1)
3 ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
4 1 (True)
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Satisfiability Modulo Theories (SMT)

• Example (single instantiations)

f : Z→ Z
(∀x : Z)(f (x) > 0)
f (0) < 0

• Example (many instantiations)

f : Z→ Z
(∀x : Z)(f (x) < f (x + 1))
f (0) > f (100)
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Relation to Two-player Games

• QBF as a two-player game between ∀ and ∃.

• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.
• A QBF is true iff there exists a winning strategy for ∃.

Example
(∀u∃e)(u↔ e)

∃-player wins by playing e ≜ u.
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Solving QBF



Solving by CEGAR Expansion

(∃E⃗ ∀U⃗)(ϕ) ≡ (∃E⃗)
∧
µ∈2U⃗

ϕ[µ]

Solve by SAT
(∧

µ∈2U⃗ ϕ[µ]
)
. Impractical!

Observe:

• (∃x∀uzw)((u ∧ z ∧ w)⇒ x) ∧ ((¬u ∧ ¬z ∧ ¬w)⇒ ¬x)
• Expansion by definition: 23

• Sufficient: u = z = w = 1 and u = z = w = 0

• (∃x)(1⇒ x ∧ 1⇒ ¬x)
• What is a good expansion?
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Solving by CEGAR Expansion Contd.

(∃E⃗ ∀U⃗) ϕ ≡ (∃E⃗) ∧
µ∈2U⃗ ϕ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E⃗

• SAT(¬ϕ[τ0]) = µ0 assignment to U⃗

• SAT(ϕ[µ0]) = τ1 assignment to E⃗

• SAT(¬ϕ[τ1]) = µ2 assignment to U⃗

• SAT(ϕ[µ0] ∧ ϕ[µ1]) = τ2 assignment to E⃗

• After n iterations

(∃E⃗ ) ∧i∈1..n ϕ[τi]
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Strengths and Weaknesses
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Careful Expansion: Good Example

(∃x . . . ∀y . . . )(ϕ ∧ y)
Setting counter-move y ≜ 0 yields false. Stop.

(∃x . . . ∀y . . . )(x ∨ ϕ)

Setting candidate x ≜ 1 yields true. Stop.
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Careful Expansion: Bad Example

(∃x∀y)(x ⇔ y)

Necessarily you need to use both:

SAT(x ⇔ 0 ∧ x ⇔ 1) . . . UNSAT Stop
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Careful Expansion: Ugly Example

(∃x1x2∀y1y2)(x1 ⇔ y1 ∨ x2 ⇔ y2)

Necessarily need 22 values of y1, y2
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Learning in QBF



Issue

• CEGAR requires 2n SAT calls for the formula

(∃x1 . . . xn∀y1 . . . yn)

( ∨
i∈1..n

xi ⇔ yi

)

• BUT: The formula immediately false if we set yi ≜ ¬xi .(
∃x1 . . . xn∀y1 . . . yn.

∨
i∈1..n

xi ⇔ ¬xi
)
≡
(
∃x1 . . . xn. 0

)

• Idea: plug in functions rather than constants.

• Where do we get the functions?
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Use Machine Learning

[J., 2018]

1. Enumerate some candidate-countermove pairs.

2. Run ML to learn a Boolean function for each variable in the
inner quantifier.

3. Strengthen abstraction with the functions.

4. Repeat.
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Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn
0 0 . . . 0 1 1 . . . 1
1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0
0 1 . . . 1 1 0 . . . 0
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Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn
0 0 . . . 0 1 1 . . . 1
1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0
0 1 . . . 1 1 0 . . . 0

• After 2 steps: y1 ← ¬x1, yi ← 1 for i ∈ 2..n.

• SAT(x1 ⇔ ¬x1 ∨
∨
i∈2..n x2 ⇔ 1)

• After 4 steps: y1 ← ¬x1 y2 ← ¬x2 . . .

• Eventually we learn the right functions.
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Implementation Notes (2018)

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K samples.
Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.
“Don’t fix what ain’t broke.”
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Experiments
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Targeting SMT



Herbrand’s Theorem

• For FOL (∀xϕ) is unsatisfiable iff there is unsatisfiable finite
grounding with the Herbrand universe

• Example
f (f (c)) ̸= c

∧ (∀x)(f (x) = x)

Instantiation:
f (f (c)) ̸= c

∧ f (c) = c
∧ f (f (c)) = f (c)

M. Janota Machine Learning for Quantifiers 16 / 47



Herbrand’s Theorem

• For FOL (∀xϕ) is unsatisfiable iff there is unsatisfiable finite
grounding with the Herbrand universe

• Example
f (f (c)) ̸= c

∧ (∀x)(f (x) = x)

Instantiation:
f (f (c)) ̸= c

∧ f (c) = c
∧ f (f (c)) = f (c)

M. Janota Machine Learning for Quantifiers 16 / 47



Herbrand’s Theorem

• For FOL (∀xϕ) is unsatisfiable iff there is unsatisfiable finite
grounding with the Herbrand universe

• Example
f (f (c)) ̸= c

∧ (∀x)(f (x) = x)

Instantiation:
f (f (c)) ̸= c

∧ f (c) = c
∧ f (f (c)) = f (c)

M. Janota Machine Learning for Quantifiers 16 / 47



Instantiations for UnSAT

f (0) > f (3) ∧ ∀x f (x) < f (x + 1)

f (1) < f (2)f (0) < f (1) f (2) < f (3)

x 7→ 0 x 7→ 1 x 7→ 2

⇒ ⊥
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Setup for Machine Learning

Input
formula

SMT
solver

Ground solver

Instantiation

Instances
Ground

model

sat

unsat

or infinite
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Strengthened Herbrand Theorem

∀x ϕ ∧ G0

T0

∧ G1

t ∈ T0

T1

∧ . . .

t ∈ T1
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Ordering Possible Candidates

∀ x y z (x < y) ∨ (x < z)

M. Janota Machine Learning for Quantifiers 20 / 47



Ordering Possible Candidates

∀ x y z (x < y) ∨ (x < z)

0 1 11

3 5 7

10 9 2

M. Janota Machine Learning for Quantifiers 20 / 47



Ordering Possible Candidates

∀ x y z (x < y) ∨ (x < z)

0 1 11

3 5 7

10 9 2

0 1 11

0 1 7

0 5 11
. . . . . . . . .

M. Janota Machine Learning for Quantifiers 20 / 47



Ordering Possible Candidates

∀ x y z (x < y) ∨ (x < z)

10 1 11

3 5 7

0 9 2

M. Janota Machine Learning for Quantifiers 20 / 47



Ordering Possible Candidates

∀ x y z (x < y) ∨ (x < z)

10 1 11

3 5 7

0 9 2

10 1 11

10 1 7

10 5 11
. . . . . . . . .

M. Janota Machine Learning for Quantifiers 20 / 47



Task for ML

Input:
Set of terms for quantified variable

Objective:
Order the terms to increase likelihood of UnSAT

M. Janota Machine Learning for Quantifiers 21 / 47



Task for ML

Input:
Set of terms for quantified variable

Objective:
Order the terms to increase likelihood of UnSAT

M. Janota Machine Learning for Quantifiers 21 / 47



High-level ML Design

[J. et al., 2022]

• Gradient boosted trees (LightGBM)

• Features are

• anonymous for uninterpreted symbols, e.g. f , g.
• non-anonymous for interpreted symbols, e.g. +, /.

• Ground term labelled positive if in an existing proof.

• Learned forest gives a score to each ground term.
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Features

• bag-of-words (BOW) features:

• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:

• age
• phase
• depth
• tried
• term context
• variable context
• variable frequency
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Obtaining Data

• ML requires large quantities of data

• Where do we get them?

1. Try to solve a set of instances.
2. Train on the set of instances solved in Step 1.
3. Augment solver with learned ML model.
4. Go to Step 1.
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Evaluation

• Families from SMT lib from UFNIA, UFLIA

• Holdout and Target sets 75% / 25%

• Cumulative Goal

• Single-Instantiation Goal
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Solved instances – Target set
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Holdout Set: Instantiation Count
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Holdout Set: Time Comparison
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Towards Synthesizing Terms



ML Maximalist — Proving By Instantiation

[Piepenbrock et al., 2025]

• A GNN analyzes the formula, and predicts how to instantiate
clauses by growing terms

• SAT solver (+ congruence closure) does the rest

Ground Solver

Neural Instantiation

Instantiations

SAT

UNSAT
Ground Solver

Solver

Instantiations

SAT

UNSAT

SAT Model

A B
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Synthesizing Terms

(1) instantiate x by head symbol h
with arity 2 and z by g of arity 1
(going from level0 to level1)

(2) instantiate x1, x2, z1 by
constants c, c, and e, respectively
(going from level1 to level2)

∀ x z P ( f( x , z ) )

∀ x1 x2 z1 P ( f( h( x1 , x2 ) , g( z1 ) ) )

P ( f( h( c , c ) , g( e ) ) )

h/2 g/1

c/0 c/0 e/0

1
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Synthesizing Terms by GNN2RNN

∀xz. P (f(x, z)) x : h z : g

∀x1x2z1. P (f(h(x1, x2), g(z1))) x1 : c x2 : c z : e

P (f(h(c, c), g(e))) GNN
RNN RNN

1
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GNN Example

Axiom 1 Axiom 2

Neg.
Conj.

P(f(x))

Q(x)

¬P(x)

¬Q(f(g(c))

P

f(g(c))f

g(c)g

cc

Q

f(x)

x

x

Node Types

Literal

Term

Relational
Symbol
Function Symbol
or Constant

Variable

Clause

Connection Types
Term-
Term

Clause-
Literal

Symbol-
Term
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System Can Learn
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Dedicated Provers are Still Better

Table 1: Performance of various methods. iProver is used in pure
instantiation mode. Random is 1 run of the 2-level random grounding. In
parentheses, we indicate which dataset was used.

Time limit 1s 10s 60s Inst. + 30s

Random (all) — — — 3.44%
Neural (train) — — — 26.25%
Neural (test) — — — 19.74%
iProver (train) 43.28% 59.99% 67.6% —
iProver (test) 43.16% 59.75% 68.69% —
CVC5 (test) 83.44% 85.6% 86.28% —
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Towards Infinite Models



SMT Models: Constants

c < d
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SMT Models: Constants

c < d

c = 0, d = 1
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SMT Models: Functions

f (0) < f (1)
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SMT Models: Functions

f (0) < f (1)

fx ≜ (1 if x = 1 else 0)
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SMT Models: Quantifiers

(∀x)(fx ≤ x)
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SMT Models: Quantifiers

(∀x)(fx ≤ x) fx ≜ x
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SMT Models: Quantifiers

(∀x)(fx < x)
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SMT Models: Quantifiers

(∀x)(fx < x)
Not Solved!
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Learn infinite models from finite ones?

M. Janota Machine Learning for Quantifiers 40 / 47



Model-Based Guided Quantifier Instantiation

For ∀xϕ construct a sequence of:

• candidate models Mi

• counterexample instantiations σi

• s.t. Mi |=
∧
j∈1..i−1 ϕ[x/σj]

• s.t. Mi ̸|= ϕ[x/σi]
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Example

(∀x)(fx > x)

∧
j∈1..i−1 ϕ[x/σj] Mi σi

true fx ≜ 0 x 7→ 0
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f (0) > 0
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Example

(∀x)(fx > x)

∧
j∈1..i−1 ϕ[x/σj] Mi σi

f (0) > 0 fx ≜ 1 x 7→ 1

M. Janota Machine Learning for Quantifiers 42 / 47



Example

(∀x)(fx > x)

∧
j∈1..i−1 ϕ[x/σj] Mi σi

f (0) > 0

f (1) > 1

fx ≜ (x = 0 ? 1 : 2) x 7→ 2

M. Janota Machine Learning for Quantifiers 42 / 47



Example

(∀x)(fx > x)

∧
j∈1..i−1 ϕ[x/σj] Mi σi

f (0) > 0

f (1) > 1

f (2) > 2

fx ≜ (x = 0 ? 1
: (x = 1 ? 2 : 3))

M. Janota Machine Learning for Quantifiers 42 / 47



Example

(∀x)(fx > x)

∧
j∈1..i−1 ϕ[x/σj] Mi σi

f (0) > 0

f (1) > 1

f (2) > 2

fx ≜ (x = 0 ? 1
: (x = 1 ? 2 : 3))

Déjà Vu
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Example: Generalization

(∀x)(fx > x)

0

1 2

x + 1

M. Janota Machine Learning for Quantifiers 43 / 47



Example: Generalization

(∀x)(fx > x)

0 1

2

x + 1

M. Janota Machine Learning for Quantifiers 43 / 47



Example: Generalization

(∀x)(fx > x)

0 1 2

x + 1

M. Janota Machine Learning for Quantifiers 43 / 47



Example: Generalization

(∀x)(fx > x)

0 1 2

x + 1

M. Janota Machine Learning for Quantifiers 43 / 47



Generalization for Functions

• Sort points lexicographically

• Keep the same hyper-plane as long as possible

• Otherwise start a new hyper-plane.

• For LIA: linear Diophantine equations,
solvable in polynomial time

0 1 2 3 4
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Generalization for Predicates

• Split recursively by hyper-planes

• until all positive or all negative
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Results UFLIA

• Implemented in cvc5

• Run on [J. et al., 2023]

solver SAT UNSAT total

standard MBQI 18,843 7,863 26,706
standard MBQI 18,843 7,863 26,706
ours smart MBQI 31,977 7,863 39,840
Z3 28,380 7,482 35,862
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Summary

• Lesson learned from QBF:
It might be useful to instantiate by more complicated objects,
which can be learned.

• In SMT instantiations can be ordered by ML.

• Synthesizing new terms is possible, but harder.

• Synthesizing new models is also possible but
What are the appropriate ML techniques?
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