
Machine Learning for Quantifiers

Mikoláš Janota

ML4SP, 10 August 2025

Czech Technical University

Outline

Intro: QBF, Expansion, Games, Careful expansion

Solving QBF

Learning in QBF

Targeting SMT

Towards Synthesizing Terms

Towards Infinite Models

M. Janota Machine Learning for Quantifiers 1 / 47

Intro: QBF, Expansion, Games,
Careful expansion

SAT and QBF

• SAT — determine if a formula is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)
• QBF — for a Quantified Boolean formula

• Example: ∀x∃y. (x ↔ y)

• Quantifications as shorthands for connectives
(∀ = ∧, ∃ = ∨)

Example:

1 ∀x∃y. (x ↔ y)
2 ∀x. (x ↔ 0) ∨ (x ↔ 1)
3 ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
4 1 (True)

M. Janota Machine Learning for Quantifiers 2 / 47

SAT and QBF

• SAT — determine if a formula is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)

• QBF — for a Quantified Boolean formula

• Example: ∀x∃y. (x ↔ y)

• Quantifications as shorthands for connectives
(∀ = ∧, ∃ = ∨)

Example:

1 ∀x∃y. (x ↔ y)
2 ∀x. (x ↔ 0) ∨ (x ↔ 1)
3 ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
4 1 (True)

M. Janota Machine Learning for Quantifiers 2 / 47

SAT and QBF

• SAT — determine if a formula is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)
• QBF — for a Quantified Boolean formula

• Example: ∀x∃y. (x ↔ y)

• Quantifications as shorthands for connectives
(∀ = ∧, ∃ = ∨)

Example:

1 ∀x∃y. (x ↔ y)
2 ∀x. (x ↔ 0) ∨ (x ↔ 1)
3 ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
4 1 (True)

M. Janota Machine Learning for Quantifiers 2 / 47

SAT and QBF

• SAT — determine if a formula is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)
• QBF — for a Quantified Boolean formula

• Example: ∀x∃y. (x ↔ y)

• Quantifications as shorthands for connectives
(∀ = ∧, ∃ = ∨)

Example:

1 ∀x∃y. (x ↔ y)
2 ∀x. (x ↔ 0) ∨ (x ↔ 1)
3 ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
4 1 (True)

M. Janota Machine Learning for Quantifiers 2 / 47

SAT and QBF

• SAT — determine if a formula is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)
• QBF — for a Quantified Boolean formula

• Example: ∀x∃y. (x ↔ y)

• Quantifications as shorthands for connectives
(∀ = ∧, ∃ = ∨)

Example:

1 ∀x∃y. (x ↔ y)
2 ∀x. (x ↔ 0) ∨ (x ↔ 1)
3 ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
4 1 (True)

M. Janota Machine Learning for Quantifiers 2 / 47

SAT and QBF

• SAT — determine if a formula is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)
• QBF — for a Quantified Boolean formula

• Example: ∀x∃y. (x ↔ y)

• Quantifications as shorthands for connectives
(∀ = ∧, ∃ = ∨)

Example:
1 ∀x∃y. (x ↔ y)

2 ∀x. (x ↔ 0) ∨ (x ↔ 1)
3 ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
4 1 (True)

M. Janota Machine Learning for Quantifiers 2 / 47

SAT and QBF

• SAT — determine if a formula is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)
• QBF — for a Quantified Boolean formula

• Example: ∀x∃y. (x ↔ y)

• Quantifications as shorthands for connectives
(∀ = ∧, ∃ = ∨)

Example:
1 ∀x∃y. (x ↔ y)
2 ∀x. (x ↔ 0) ∨ (x ↔ 1)

3 ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
4 1 (True)

M. Janota Machine Learning for Quantifiers 2 / 47

SAT and QBF

• SAT — determine if a formula is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)
• QBF — for a Quantified Boolean formula

• Example: ∀x∃y. (x ↔ y)

• Quantifications as shorthands for connectives
(∀ = ∧, ∃ = ∨)

Example:
1 ∀x∃y. (x ↔ y)
2 ∀x. (x ↔ 0) ∨ (x ↔ 1)
3 ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))

4 1 (True)

M. Janota Machine Learning for Quantifiers 2 / 47

SAT and QBF

• SAT — determine if a formula is satisfiable

• Example: {x = 1, y = 0} |= (x ∨ y) ∧ (x ∨ ¬y)
• QBF — for a Quantified Boolean formula

• Example: ∀x∃y. (x ↔ y)

• Quantifications as shorthands for connectives
(∀ = ∧, ∃ = ∨)

Example:
1 ∀x∃y. (x ↔ y)
2 ∀x. (x ↔ 0) ∨ (x ↔ 1)
3 ((0↔ 0) ∨ (0↔ 1)) ∧ ((1↔ 0) ∨ (1↔ 1))
4 1 (True)

M. Janota Machine Learning for Quantifiers 2 / 47

Satisfiability Modulo Theories (SMT)

• Example (single instantiations)

f : Z→ Z
(∀x : Z)(f (x) > 0)
f (0) < 0

• Example (many instantiations)

f : Z→ Z
(∀x : Z)(f (x) < f (x + 1))
f (0) > f (100)

M. Janota Machine Learning for Quantifiers 3 / 47

Satisfiability Modulo Theories (SMT)

• Example (single instantiations)

f : Z→ Z
(∀x : Z)(f (x) > 0)
f (0) < 0

• Example (many instantiations)

f : Z→ Z
(∀x : Z)(f (x) < f (x + 1))
f (0) > f (100)

M. Janota Machine Learning for Quantifiers 3 / 47

Relation to Two-player Games

• QBF as a two-player game between ∀ and ∃.

• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.
• A QBF is true iff there exists a winning strategy for ∃.

Example
(∀u∃e)(u↔ e)

∃-player wins by playing e ≜ u.

M. Janota Machine Learning for Quantifiers 4 / 47

Relation to Two-player Games

• QBF as a two-player game between ∀ and ∃.
• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.
• A QBF is true iff there exists a winning strategy for ∃.

Example
(∀u∃e)(u↔ e)

∃-player wins by playing e ≜ u.

M. Janota Machine Learning for Quantifiers 4 / 47

Relation to Two-player Games

• QBF as a two-player game between ∀ and ∃.
• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.
• A QBF is true iff there exists a winning strategy for ∃.

Example
(∀u∃e)(u↔ e)

∃-player wins by playing e ≜ u.

M. Janota Machine Learning for Quantifiers 4 / 47

Relation to Two-player Games

• QBF as a two-player game between ∀ and ∃.
• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.

• A QBF is true iff there exists a winning strategy for ∃.
Example

(∀u∃e)(u↔ e)

∃-player wins by playing e ≜ u.

M. Janota Machine Learning for Quantifiers 4 / 47

Relation to Two-player Games

• QBF as a two-player game between ∀ and ∃.
• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.
• A QBF is true iff there exists a winning strategy for ∃.

Example
(∀u∃e)(u↔ e)

∃-player wins by playing e ≜ u.

M. Janota Machine Learning for Quantifiers 4 / 47

Relation to Two-player Games

• QBF as a two-player game between ∀ and ∃.
• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.
• A QBF is true iff there exists a winning strategy for ∃.

Example
(∀u∃e)(u↔ e)

∃-player wins by playing e ≜ u.

M. Janota Machine Learning for Quantifiers 4 / 47

Relation to Two-player Games

• QBF as a two-player game between ∀ and ∃.
• ∀ wins a game if the matrix becomes false.

• ∃ wins a game if the matrix becomes true.

• A QBF is false iff there exists a winning strategy for ∀.
• A QBF is true iff there exists a winning strategy for ∃.

Example
(∀u∃e)(u↔ e)

∃-player wins by playing e ≜ u.

M. Janota Machine Learning for Quantifiers 4 / 47

Solving QBF

Solving by CEGAR Expansion

(∃E⃗ ∀U⃗)(ϕ) ≡ (∃E⃗)
∧
µ∈2U⃗

ϕ[µ]

Solve by SAT
(∧

µ∈2U⃗ ϕ[µ]
)
. Impractical!

Observe:

• (∃x∀uzw)((u ∧ z ∧ w)⇒ x) ∧ ((¬u ∧ ¬z ∧ ¬w)⇒ ¬x)
• Expansion by definition: 23

• Sufficient: u = z = w = 1 and u = z = w = 0

• (∃x)(1⇒ x ∧ 1⇒ ¬x)
• What is a good expansion?

M. Janota Machine Learning for Quantifiers 5 / 47

Solving by CEGAR Expansion

(∃E⃗ ∀U⃗)(ϕ) ≡ (∃E⃗)
∧
µ∈2U⃗

ϕ[µ]

Solve by SAT
(∧

µ∈2U⃗ ϕ[µ]
)
. Impractical!

Observe:

• (∃x∀uzw)((u ∧ z ∧ w)⇒ x) ∧ ((¬u ∧ ¬z ∧ ¬w)⇒ ¬x)
• Expansion by definition: 23

• Sufficient: u = z = w = 1 and u = z = w = 0

• (∃x)(1⇒ x ∧ 1⇒ ¬x)
• What is a good expansion?

M. Janota Machine Learning for Quantifiers 5 / 47

Solving by CEGAR Expansion

(∃E⃗ ∀U⃗)(ϕ) ≡ (∃E⃗)
∧
µ∈2U⃗

ϕ[µ]

Solve by SAT
(∧

µ∈2U⃗ ϕ[µ]
)
. Impractical!

Observe:

• (∃x∀uzw)((u ∧ z ∧ w)⇒ x) ∧ ((¬u ∧ ¬z ∧ ¬w)⇒ ¬x)

• Expansion by definition: 23

• Sufficient: u = z = w = 1 and u = z = w = 0

• (∃x)(1⇒ x ∧ 1⇒ ¬x)
• What is a good expansion?

M. Janota Machine Learning for Quantifiers 5 / 47

Solving by CEGAR Expansion

(∃E⃗ ∀U⃗)(ϕ) ≡ (∃E⃗)
∧
µ∈2U⃗

ϕ[µ]

Solve by SAT
(∧

µ∈2U⃗ ϕ[µ]
)
. Impractical!

Observe:

• (∃x∀uzw)((u ∧ z ∧ w)⇒ x) ∧ ((¬u ∧ ¬z ∧ ¬w)⇒ ¬x)
• Expansion by definition: 23

• Sufficient: u = z = w = 1 and u = z = w = 0

• (∃x)(1⇒ x ∧ 1⇒ ¬x)
• What is a good expansion?

M. Janota Machine Learning for Quantifiers 5 / 47

Solving by CEGAR Expansion

(∃E⃗ ∀U⃗)(ϕ) ≡ (∃E⃗)
∧
µ∈2U⃗

ϕ[µ]

Solve by SAT
(∧

µ∈2U⃗ ϕ[µ]
)
. Impractical!

Observe:

• (∃x∀uzw)((u ∧ z ∧ w)⇒ x) ∧ ((¬u ∧ ¬z ∧ ¬w)⇒ ¬x)
• Expansion by definition: 23

• Sufficient: u = z = w = 1 and u = z = w = 0

• (∃x)(1⇒ x ∧ 1⇒ ¬x)
• What is a good expansion?

M. Janota Machine Learning for Quantifiers 5 / 47

Solving by CEGAR Expansion

(∃E⃗ ∀U⃗)(ϕ) ≡ (∃E⃗)
∧
µ∈2U⃗

ϕ[µ]

Solve by SAT
(∧

µ∈2U⃗ ϕ[µ]
)
. Impractical!

Observe:

• (∃x∀uzw)((u ∧ z ∧ w)⇒ x) ∧ ((¬u ∧ ¬z ∧ ¬w)⇒ ¬x)
• Expansion by definition: 23

• Sufficient: u = z = w = 1 and u = z = w = 0

• (∃x)(1⇒ x ∧ 1⇒ ¬x)

• What is a good expansion?

M. Janota Machine Learning for Quantifiers 5 / 47

Solving by CEGAR Expansion

(∃E⃗ ∀U⃗)(ϕ) ≡ (∃E⃗)
∧
µ∈2U⃗

ϕ[µ]

Solve by SAT
(∧

µ∈2U⃗ ϕ[µ]
)
. Impractical!

Observe:

• (∃x∀uzw)((u ∧ z ∧ w)⇒ x) ∧ ((¬u ∧ ¬z ∧ ¬w)⇒ ¬x)
• Expansion by definition: 23

• Sufficient: u = z = w = 1 and u = z = w = 0

• (∃x)(1⇒ x ∧ 1⇒ ¬x)
• What is a good expansion?

M. Janota Machine Learning for Quantifiers 5 / 47

Solving by CEGAR Expansion Contd.

(∃E⃗ ∀U⃗) ϕ ≡ (∃E⃗) ∧
µ∈2U⃗ ϕ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E⃗

• SAT(¬ϕ[τ0]) = µ0 assignment to U⃗

• SAT(ϕ[µ0]) = τ1 assignment to E⃗

• SAT(¬ϕ[τ1]) = µ2 assignment to U⃗

• SAT(ϕ[µ0] ∧ ϕ[µ1]) = τ2 assignment to E⃗

• After n iterations

(∃E⃗) ∧i∈1..n ϕ[τi]

M. Janota Machine Learning for Quantifiers 6 / 47

Solving by CEGAR Expansion Contd.

(∃E⃗ ∀U⃗) ϕ ≡ (∃E⃗) ∧
µ∈2U⃗ ϕ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E⃗

• SAT(¬ϕ[τ0]) = µ0 assignment to U⃗

• SAT(ϕ[µ0]) = τ1 assignment to E⃗

• SAT(¬ϕ[τ1]) = µ2 assignment to U⃗

• SAT(ϕ[µ0] ∧ ϕ[µ1]) = τ2 assignment to E⃗

• After n iterations

(∃E⃗) ∧i∈1..n ϕ[τi]

M. Janota Machine Learning for Quantifiers 6 / 47

Solving by CEGAR Expansion Contd.

(∃E⃗ ∀U⃗) ϕ ≡ (∃E⃗) ∧
µ∈2U⃗ ϕ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E⃗

• SAT(¬ϕ[τ0]) = µ0 assignment to U⃗

• SAT(ϕ[µ0]) = τ1 assignment to E⃗

• SAT(¬ϕ[τ1]) = µ2 assignment to U⃗

• SAT(ϕ[µ0] ∧ ϕ[µ1]) = τ2 assignment to E⃗

• After n iterations

(∃E⃗) ∧i∈1..n ϕ[τi]

M. Janota Machine Learning for Quantifiers 6 / 47

Solving by CEGAR Expansion Contd.

(∃E⃗ ∀U⃗) ϕ ≡ (∃E⃗) ∧
µ∈2U⃗ ϕ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E⃗

• SAT(¬ϕ[τ0]) = µ0 assignment to U⃗

• SAT(ϕ[µ0]) = τ1 assignment to E⃗

• SAT(¬ϕ[τ1]) = µ2 assignment to U⃗

• SAT(ϕ[µ0] ∧ ϕ[µ1]) = τ2 assignment to E⃗

• After n iterations

(∃E⃗) ∧i∈1..n ϕ[τi]

M. Janota Machine Learning for Quantifiers 6 / 47

Solving by CEGAR Expansion Contd.

(∃E⃗ ∀U⃗) ϕ ≡ (∃E⃗) ∧
µ∈2U⃗ ϕ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E⃗

• SAT(¬ϕ[τ0]) = µ0 assignment to U⃗

• SAT(ϕ[µ0]) = τ1 assignment to E⃗

• SAT(¬ϕ[τ1]) = µ2 assignment to U⃗

• SAT(ϕ[µ0] ∧ ϕ[µ1]) = τ2 assignment to E⃗

• After n iterations

(∃E⃗) ∧i∈1..n ϕ[τi]

M. Janota Machine Learning for Quantifiers 6 / 47

Solving by CEGAR Expansion Contd.

(∃E⃗ ∀U⃗) ϕ ≡ (∃E⃗) ∧
µ∈2U⃗ ϕ[µ]

Expand gradually instead: [J. and Marques-Silva, 2011]

• Pick τ0 arbitrary assignment to E⃗

• SAT(¬ϕ[τ0]) = µ0 assignment to U⃗

• SAT(ϕ[µ0]) = τ1 assignment to E⃗

• SAT(¬ϕ[τ1]) = µ2 assignment to U⃗

• SAT(ϕ[µ0] ∧ ϕ[µ1]) = τ2 assignment to E⃗

• After n iterations

(∃E⃗) ∧i∈1..n ϕ[τi]

M. Janota Machine Learning for Quantifiers 6 / 47

Strengths and Weaknesses

M. Janota Machine Learning for Quantifiers 7 / 47

Careful Expansion: Good Example

(∃x . . . ∀y . . .)(ϕ ∧ y)
Setting counter-move y ≜ 0 yields false. Stop.

(∃x . . . ∀y . . .)(x ∨ ϕ)

Setting candidate x ≜ 1 yields true. Stop.

M. Janota Machine Learning for Quantifiers 8 / 47

Careful Expansion: Good Example

(∃x . . . ∀y . . .)(ϕ ∧ y)
Setting counter-move y ≜ 0 yields false. Stop.

(∃x . . . ∀y . . .)(x ∨ ϕ)

Setting candidate x ≜ 1 yields true. Stop.

M. Janota Machine Learning for Quantifiers 8 / 47

Careful Expansion: Bad Example

(∃x∀y)(x ⇔ y)

Necessarily you need to use both:

SAT(x ⇔ 0 ∧ x ⇔ 1) . . . UNSAT Stop

M. Janota Machine Learning for Quantifiers 9 / 47

Careful Expansion: Bad Example

(∃x∀y)(x ⇔ y)
Necessarily you need to use both:

SAT(x ⇔ 0 ∧ x ⇔ 1) . . . UNSAT Stop

M. Janota Machine Learning for Quantifiers 9 / 47

Careful Expansion: Ugly Example

(∃x1x2∀y1y2)(x1 ⇔ y1 ∨ x2 ⇔ y2)

Necessarily need 22 values of y1, y2

M. Janota Machine Learning for Quantifiers 10 / 47

Careful Expansion: Ugly Example

(∃x1x2∀y1y2)(x1 ⇔ y1 ∨ x2 ⇔ y2)

Necessarily need 22 values of y1, y2

M. Janota Machine Learning for Quantifiers 10 / 47

Learning in QBF

Issue

• CEGAR requires 2n SAT calls for the formula

(∃x1 . . . xn∀y1 . . . yn)

(∨
i∈1..n

xi ⇔ yi

)

• BUT: The formula immediately false if we set yi ≜ ¬xi .(
∃x1 . . . xn∀y1 . . . yn.

∨
i∈1..n

xi ⇔ ¬xi
)
≡
(
∃x1 . . . xn. 0

)

• Idea: plug in functions rather than constants.

• Where do we get the functions?

M. Janota Machine Learning for Quantifiers 11 / 47

Issue

• CEGAR requires 2n SAT calls for the formula

(∃x1 . . . xn∀y1 . . . yn)

(∨
i∈1..n

xi ⇔ yi

)

• BUT: The formula immediately false if we set yi ≜ ¬xi .(
∃x1 . . . xn∀y1 . . . yn.

∨
i∈1..n

xi ⇔ ¬xi
)
≡
(
∃x1 . . . xn. 0

)

• Idea: plug in functions rather than constants.

• Where do we get the functions?

M. Janota Machine Learning for Quantifiers 11 / 47

Issue

• CEGAR requires 2n SAT calls for the formula

(∃x1 . . . xn∀y1 . . . yn)

(∨
i∈1..n

xi ⇔ yi

)

• BUT: The formula immediately false if we set yi ≜ ¬xi .(
∃x1 . . . xn∀y1 . . . yn.

∨
i∈1..n

xi ⇔ ¬xi
)
≡
(
∃x1 . . . xn. 0

)

• Idea: plug in functions rather than constants.

• Where do we get the functions?

M. Janota Machine Learning for Quantifiers 11 / 47

Issue

• CEGAR requires 2n SAT calls for the formula

(∃x1 . . . xn∀y1 . . . yn)

(∨
i∈1..n

xi ⇔ yi

)

• BUT: The formula immediately false if we set yi ≜ ¬xi .(
∃x1 . . . xn∀y1 . . . yn.

∨
i∈1..n

xi ⇔ ¬xi
)
≡
(
∃x1 . . . xn. 0

)

• Idea: plug in functions rather than constants.

• Where do we get the functions?

M. Janota Machine Learning for Quantifiers 11 / 47

Use Machine Learning

[J., 2018]

1. Enumerate some candidate-countermove pairs.

2. Run ML to learn a Boolean function for each variable in the
inner quantifier.

3. Strengthen abstraction with the functions.

4. Repeat.

M. Janota Machine Learning for Quantifiers 12 / 47

Use Machine Learning

[J., 2018]

1. Enumerate some candidate-countermove pairs.

2. Run ML to learn a Boolean function for each variable in the
inner quantifier.

3. Strengthen abstraction with the functions.

4. Repeat.

M. Janota Machine Learning for Quantifiers 12 / 47

Use Machine Learning

[J., 2018]

1. Enumerate some candidate-countermove pairs.

2. Run ML to learn a Boolean function for each variable in the
inner quantifier.

3. Strengthen abstraction with the functions.

4. Repeat.

M. Janota Machine Learning for Quantifiers 12 / 47

Use Machine Learning

[J., 2018]

1. Enumerate some candidate-countermove pairs.

2. Run ML to learn a Boolean function for each variable in the
inner quantifier.

3. Strengthen abstraction with the functions.

4. Repeat.

M. Janota Machine Learning for Quantifiers 12 / 47

Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn
0 0 . . . 0 1 1 . . . 1
1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0
0 1 . . . 1 1 0 . . . 0

M. Janota Machine Learning for Quantifiers 13 / 47

Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn
0 0 . . . 0 1 1 . . . 1
1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0
0 1 . . . 1 1 0 . . . 0

• After 2 steps: y1 ← ¬x1, yi ← 1 for i ∈ 2..n.

• SAT(x1 ⇔ ¬x1 ∨
∨
i∈2..n x2 ⇔ 1)

• After 4 steps: y1 ← ¬x1 y2 ← ¬x2 . . .

• Eventually we learn the right functions.

M. Janota Machine Learning for Quantifiers 13 / 47

Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn
0 0 . . . 0 1 1 . . . 1
1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0
0 1 . . . 1 1 0 . . . 0

• After 2 steps: y1 ← ¬x1, yi ← 1 for i ∈ 2..n.

• SAT(x1 ⇔ ¬x1 ∨
∨
i∈2..n x2 ⇔ 1)

• After 4 steps: y1 ← ¬x1 y2 ← ¬x2 . . .

• Eventually we learn the right functions.

M. Janota Machine Learning for Quantifiers 13 / 47

Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn
0 0 . . . 0 1 1 . . . 1
1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0
0 1 . . . 1 1 0 . . . 0

• After 2 steps: y1 ← ¬x1, yi ← 1 for i ∈ 2..n.

• SAT(x1 ⇔ ¬x1 ∨
∨
i∈2..n x2 ⇔ 1)

• After 4 steps: y1 ← ¬x1 y2 ← ¬x2 . . .

• Eventually we learn the right functions.

M. Janota Machine Learning for Quantifiers 13 / 47

Machine Learning Example

x1 x2 . . . xn y1 y2 . . . yn
0 0 . . . 0 1 1 . . . 1
1 0 . . . 0 0 1 . . . 1

0 0 . . . 1 1 1 . . . 0
0 1 . . . 1 1 0 . . . 0

• After 2 steps: y1 ← ¬x1, yi ← 1 for i ∈ 2..n.

• SAT(x1 ⇔ ¬x1 ∨
∨
i∈2..n x2 ⇔ 1)

• After 4 steps: y1 ← ¬x1 y2 ← ¬x2 . . .

• Eventually we learn the right functions.

M. Janota Machine Learning for Quantifiers 13 / 47

Implementation Notes (2018)

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K samples.
Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.
“Don’t fix what ain’t broke.”

M. Janota Machine Learning for Quantifiers 14 / 47

Implementation Notes (2018)

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K samples.
Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.
“Don’t fix what ain’t broke.”

M. Janota Machine Learning for Quantifiers 14 / 47

Implementation Notes (2018)

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K samples.
Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.
“Don’t fix what ain’t broke.”

M. Janota Machine Learning for Quantifiers 14 / 47

Implementation Notes (2018)

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K samples.
Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.
“Don’t fix what ain’t broke.”

M. Janota Machine Learning for Quantifiers 14 / 47

Implementation Notes (2018)

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K samples.
Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.
“Don’t fix what ain’t broke.”

M. Janota Machine Learning for Quantifiers 14 / 47

Implementation Notes (2018)

• Use CEGAR as before.

• Recursion to generalize to multiple levels as before.

• Refinement as before.

• Every K refinements, learn new functions from last K samples.
Refine with them.

• Learning using decision trees by ID3 algorithm.

• Additional heuristic: If a learned function still works, keep it.
“Don’t fix what ain’t broke.”

M. Janota Machine Learning for Quantifiers 14 / 47

Experiments

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

CP
U

tim
e

(s
)

instances

qfun-64
qfun-128

rareqs
qfun-64-f

quabs
gq

M. Janota Machine Learning for Quantifiers 15 / 47

Targeting SMT

Herbrand’s Theorem

• For FOL (∀xϕ) is unsatisfiable iff there is unsatisfiable finite
grounding with the Herbrand universe

• Example
f (f (c)) ̸= c

∧ (∀x)(f (x) = x)

Instantiation:
f (f (c)) ̸= c

∧ f (c) = c
∧ f (f (c)) = f (c)

M. Janota Machine Learning for Quantifiers 16 / 47

Herbrand’s Theorem

• For FOL (∀xϕ) is unsatisfiable iff there is unsatisfiable finite
grounding with the Herbrand universe

• Example
f (f (c)) ̸= c

∧ (∀x)(f (x) = x)

Instantiation:
f (f (c)) ̸= c

∧ f (c) = c
∧ f (f (c)) = f (c)

M. Janota Machine Learning for Quantifiers 16 / 47

Herbrand’s Theorem

• For FOL (∀xϕ) is unsatisfiable iff there is unsatisfiable finite
grounding with the Herbrand universe

• Example
f (f (c)) ̸= c

∧ (∀x)(f (x) = x)

Instantiation:
f (f (c)) ̸= c

∧ f (c) = c
∧ f (f (c)) = f (c)

M. Janota Machine Learning for Quantifiers 16 / 47

Instantiations for UnSAT

f (0) > f (3) ∧ ∀x f (x) < f (x + 1)

f (1) < f (2)f (0) < f (1) f (2) < f (3)

x 7→ 0 x 7→ 1 x 7→ 2

⇒ ⊥

M. Janota Machine Learning for Quantifiers 17 / 47

Instantiations for UnSAT

f (0) > f (3) ∧ ∀x f (x) < f (x + 1)

f (1) < f (2)f (0) < f (1) f (2) < f (3)

x 7→ 0 x 7→ 1 x 7→ 2

⇒ ⊥

M. Janota Machine Learning for Quantifiers 17 / 47

Instantiations for UnSAT

f (0) > f (3) ∧ ∀x f (x) < f (x + 1)

f (1) < f (2)f (0) < f (1) f (2) < f (3)

x 7→ 0 x 7→ 1 x 7→ 2

⇒ ⊥

M. Janota Machine Learning for Quantifiers 17 / 47

Setup for Machine Learning

Input
formula

SMT
solver

Ground solver

Instantiation

Instances
Ground

model

sat

unsat

or infinite

M. Janota Machine Learning for Quantifiers 18 / 47

Setup for Machine Learning

Input
formula

SMT
solver

Ground solver

Instantiation
ML

advice

Instances
Ground

model

sat

unsat

or infinite

M. Janota Machine Learning for Quantifiers 18 / 47

Strengthened Herbrand Theorem

∀x ϕ ∧ G0

T0

∧ G1

t ∈ T0

T1

∧ . . .

t ∈ T1

M. Janota Machine Learning for Quantifiers 19 / 47

Strengthened Herbrand Theorem

∀x ϕ ∧ G0

T0

∧ G1

t ∈ T0

T1

∧ . . .

t ∈ T1

M. Janota Machine Learning for Quantifiers 19 / 47

Strengthened Herbrand Theorem

∀x ϕ ∧ G0

T0

∧ G1

t ∈ T0

T1

∧ . . .

t ∈ T1

M. Janota Machine Learning for Quantifiers 19 / 47

Strengthened Herbrand Theorem

∀x ϕ ∧ G0

T0

∧ G1

t ∈ T0

T1

∧ . . .

t ∈ T1

M. Janota Machine Learning for Quantifiers 19 / 47

Strengthened Herbrand Theorem

∀x ϕ ∧ G0

T0

∧ G1

t ∈ T0

T1

∧ . . .

t ∈ T1

M. Janota Machine Learning for Quantifiers 19 / 47

Ordering Possible Candidates

∀ x y z (x < y) ∨ (x < z)

M. Janota Machine Learning for Quantifiers 20 / 47

Ordering Possible Candidates

∀ x y z (x < y) ∨ (x < z)

0 1 11

3 5 7

10 9 2

M. Janota Machine Learning for Quantifiers 20 / 47

Ordering Possible Candidates

∀ x y z (x < y) ∨ (x < z)

0 1 11

3 5 7

10 9 2

0 1 11

0 1 7

0 5 11
.

M. Janota Machine Learning for Quantifiers 20 / 47

Ordering Possible Candidates

∀ x y z (x < y) ∨ (x < z)

10 1 11

3 5 7

0 9 2

M. Janota Machine Learning for Quantifiers 20 / 47

Ordering Possible Candidates

∀ x y z (x < y) ∨ (x < z)

10 1 11

3 5 7

0 9 2

10 1 11

10 1 7

10 5 11
.

M. Janota Machine Learning for Quantifiers 20 / 47

Task for ML

Input:
Set of terms for quantified variable

Objective:
Order the terms to increase likelihood of UnSAT

M. Janota Machine Learning for Quantifiers 21 / 47

Task for ML

Input:
Set of terms for quantified variable

Objective:
Order the terms to increase likelihood of UnSAT

M. Janota Machine Learning for Quantifiers 21 / 47

High-level ML Design

[J. et al., 2022]

• Gradient boosted trees (LightGBM)

• Features are

• anonymous for uninterpreted symbols, e.g. f , g.
• non-anonymous for interpreted symbols, e.g. +, /.

• Ground term labelled positive if in an existing proof.

• Learned forest gives a score to each ground term.

M. Janota Machine Learning for Quantifiers 22 / 47

High-level ML Design

[J. et al., 2022]

• Gradient boosted trees (LightGBM)
• Features are

• anonymous for uninterpreted symbols, e.g. f , g.
• non-anonymous for interpreted symbols, e.g. +, /.

• Ground term labelled positive if in an existing proof.

• Learned forest gives a score to each ground term.

M. Janota Machine Learning for Quantifiers 22 / 47

High-level ML Design

[J. et al., 2022]

• Gradient boosted trees (LightGBM)
• Features are

• anonymous for uninterpreted symbols, e.g. f , g.

• non-anonymous for interpreted symbols, e.g. +, /.

• Ground term labelled positive if in an existing proof.

• Learned forest gives a score to each ground term.

M. Janota Machine Learning for Quantifiers 22 / 47

High-level ML Design

[J. et al., 2022]

• Gradient boosted trees (LightGBM)
• Features are

• anonymous for uninterpreted symbols, e.g. f , g.
• non-anonymous for interpreted symbols, e.g. +, /.

• Ground term labelled positive if in an existing proof.

• Learned forest gives a score to each ground term.

M. Janota Machine Learning for Quantifiers 22 / 47

High-level ML Design

[J. et al., 2022]

• Gradient boosted trees (LightGBM)
• Features are

• anonymous for uninterpreted symbols, e.g. f , g.
• non-anonymous for interpreted symbols, e.g. +, /.

• Ground term labelled positive if in an existing proof.

• Learned forest gives a score to each ground term.

M. Janota Machine Learning for Quantifiers 22 / 47

High-level ML Design

[J. et al., 2022]

• Gradient boosted trees (LightGBM)
• Features are

• anonymous for uninterpreted symbols, e.g. f , g.
• non-anonymous for interpreted symbols, e.g. +, /.

• Ground term labelled positive if in an existing proof.

• Learned forest gives a score to each ground term.

M. Janota Machine Learning for Quantifiers 22 / 47

Features

• bag-of-words (BOW) features:

• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:

• age
• phase
• depth
• tried
• term context
• variable context
• variable frequency

M. Janota Machine Learning for Quantifiers 23 / 47

Features

• bag-of-words (BOW) features:
• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:

• age
• phase
• depth
• tried
• term context
• variable context
• variable frequency

M. Janota Machine Learning for Quantifiers 23 / 47

Features

• bag-of-words (BOW) features:
• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol

• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:

• age
• phase
• depth
• tried
• term context
• variable context
• variable frequency

M. Janota Machine Learning for Quantifiers 23 / 47

Features

• bag-of-words (BOW) features:
• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:

• age
• phase
• depth
• tried
• term context
• variable context
• variable frequency

M. Janota Machine Learning for Quantifiers 23 / 47

Features

• bag-of-words (BOW) features:
• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:

• age
• phase
• depth
• tried
• term context
• variable context
• variable frequency

M. Janota Machine Learning for Quantifiers 23 / 47

Features

• bag-of-words (BOW) features:
• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:
• age

• phase
• depth
• tried
• term context
• variable context
• variable frequency

M. Janota Machine Learning for Quantifiers 23 / 47

Features

• bag-of-words (BOW) features:
• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:
• age
• phase

• depth
• tried
• term context
• variable context
• variable frequency

M. Janota Machine Learning for Quantifiers 23 / 47

Features

• bag-of-words (BOW) features:
• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:
• age
• phase
• depth

• tried
• term context
• variable context
• variable frequency

M. Janota Machine Learning for Quantifiers 23 / 47

Features

• bag-of-words (BOW) features:
• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:
• age
• phase
• depth
• tried

• term context
• variable context
• variable frequency

M. Janota Machine Learning for Quantifiers 23 / 47

Features

• bag-of-words (BOW) features:
• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:
• age
• phase
• depth
• tried
• term context

• variable context
• variable frequency

M. Janota Machine Learning for Quantifiers 23 / 47

Features

• bag-of-words (BOW) features:
• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:
• age
• phase
• depth
• tried
• term context
• variable context

• variable frequency

M. Janota Machine Learning for Quantifiers 23 / 47

Features

• bag-of-words (BOW) features:
• kinds determined by AST in cvc5:
variable, skolem, not, and, plus, forall, etc.

• count number of occurrences of a symbol
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:
• age
• phase
• depth
• tried
• term context
• variable context
• variable frequency

M. Janota Machine Learning for Quantifiers 23 / 47

Obtaining Data

• ML requires large quantities of data

• Where do we get them?

1. Try to solve a set of instances.
2. Train on the set of instances solved in Step 1.
3. Augment solver with learned ML model.
4. Go to Step 1.

M. Janota Machine Learning for Quantifiers 24 / 47

Obtaining Data

• ML requires large quantities of data
• Where do we get them?

1. Try to solve a set of instances.
2. Train on the set of instances solved in Step 1.
3. Augment solver with learned ML model.
4. Go to Step 1.

M. Janota Machine Learning for Quantifiers 24 / 47

Obtaining Data

• ML requires large quantities of data
• Where do we get them?

1. Try to solve a set of instances.

2. Train on the set of instances solved in Step 1.
3. Augment solver with learned ML model.
4. Go to Step 1.

M. Janota Machine Learning for Quantifiers 24 / 47

Obtaining Data

• ML requires large quantities of data
• Where do we get them?

1. Try to solve a set of instances.
2. Train on the set of instances solved in Step 1.

3. Augment solver with learned ML model.
4. Go to Step 1.

M. Janota Machine Learning for Quantifiers 24 / 47

Obtaining Data

• ML requires large quantities of data
• Where do we get them?

1. Try to solve a set of instances.
2. Train on the set of instances solved in Step 1.
3. Augment solver with learned ML model.

4. Go to Step 1.

M. Janota Machine Learning for Quantifiers 24 / 47

Obtaining Data

• ML requires large quantities of data
• Where do we get them?

1. Try to solve a set of instances.
2. Train on the set of instances solved in Step 1.
3. Augment solver with learned ML model.
4. Go to Step 1.

M. Janota Machine Learning for Quantifiers 24 / 47

Evaluation

• Families from SMT lib from UFNIA, UFLIA

• Holdout and Target sets 75% / 25%

• Cumulative Goal

• Single-Instantiation Goal

M. Janota Machine Learning for Quantifiers 25 / 47

Evaluation

• Families from SMT lib from UFNIA, UFLIA

• Holdout and Target sets 75% / 25%

• Cumulative Goal

• Single-Instantiation Goal

M. Janota Machine Learning for Quantifiers 25 / 47

Evaluation

• Families from SMT lib from UFNIA, UFLIA

• Holdout and Target sets 75% / 25%

• Cumulative Goal

• Single-Instantiation Goal

M. Janota Machine Learning for Quantifiers 25 / 47

Evaluation

• Families from SMT lib from UFNIA, UFLIA

• Holdout and Target sets 75% / 25%

• Cumulative Goal

• Single-Instantiation Goal

M. Janota Machine Learning for Quantifiers 25 / 47

Solved instances – Target set

150

160

170

180

0 1 3 5 7 9 11 13 15 17 19

UFLIA−grasshopper

75

80

85

90

0 1 3 5 7 9 11 13 15 17 19
Iteration

S
ol

ve
d

Solver ML−guided Randomized Statistic type Cumulative Individual iter.

UFLIA−tokeneer

M. Janota Machine Learning for Quantifiers 26 / 47

Solved instances – Target set

40

80

120

160

0 1 3 5 7 9 11 13 15 17 19

UFLIA−boogie

75

80

85

90

0 1 3 5 7 9 11 13 15 17 19
Iteration

S
ol

ve
d

Solver ML−guided Randomized Statistic type Cumulative Individual iter.

UFLIA−tokeneer

M. Janota Machine Learning for Quantifiers 27 / 47

Holdout Set: Instantiation Count

10

100

1000

10000

10 100 1000 10000
Base solver

M
L−

gu
id

ed
 s

ol
ve

r

Instantiations

M. Janota Machine Learning for Quantifiers 28 / 47

Holdout Set: Time Comparison

0.1

1.0

10.0

100.0

0.1 1.0 10.0 100.0
Base solver

M
L−

gu
id

ed
 s

ol
ve

r

Time

M. Janota Machine Learning for Quantifiers 29 / 47

Towards Synthesizing Terms

ML Maximalist — Proving By Instantiation

[Piepenbrock et al., 2025]

• A GNN analyzes the formula, and predicts how to instantiate
clauses by growing terms

• SAT solver (+ congruence closure) does the rest

Ground Solver

Neural Instantiation

Instantiations

SAT

UNSAT
Ground Solver

Solver

Instantiations

SAT

UNSAT

SAT Model

A B

M. Janota Machine Learning for Quantifiers 30 / 47

Synthesizing Terms

(1) instantiate x by head symbol h
with arity 2 and z by g of arity 1
(going from level0 to level1)

(2) instantiate x1, x2, z1 by
constants c, c, and e, respectively
(going from level1 to level2)

∀ x z P (f(x , z))

∀ x1 x2 z1 P (f(h(x1 , x2) , g(z1)))

P (f(h(c , c) , g(e)))

h/2 g/1

c/0 c/0 e/0

1

M. Janota Machine Learning for Quantifiers 31 / 47

Synthesizing Terms by GNN2RNN

∀xz. P (f(x, z)) x : h z : g

∀x1x2z1. P (f(h(x1, x2), g(z1))) x1 : c x2 : c z : e

P (f(h(c, c), g(e))) GNN
RNN RNN

1

M. Janota Machine Learning for Quantifiers 32 / 47

GNN Example

Axiom 1 Axiom 2

Neg.
Conj.

P(f(x))

Q(x)

¬P(x)

¬Q(f(g(c))

P

f(g(c))f

g(c)g

cc

Q

f(x)

x

x

Node Types

Literal

Term

Relational
Symbol
Function Symbol
or Constant

Variable

Clause

Connection Types
Term-
Term

Clause-
Literal

Symbol-
Term

M. Janota Machine Learning for Quantifiers 33 / 47

System Can Learn

0 200 400 600 800 1000 1200
Iterations

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Pe
rc

en
ta

ge
 p

ro
ve

d
Training

Training set % solved from 1000 sample problems
Restart with new model

M. Janota Machine Learning for Quantifiers 34 / 47

Dedicated Provers are Still Better

Table 1: Performance of various methods. iProver is used in pure
instantiation mode. Random is 1 run of the 2-level random grounding. In
parentheses, we indicate which dataset was used.

Time limit 1s 10s 60s Inst. + 30s

Random (all) — — — 3.44%
Neural (train) — — — 26.25%
Neural (test) — — — 19.74%
iProver (train) 43.28% 59.99% 67.6% —
iProver (test) 43.16% 59.75% 68.69% —
CVC5 (test) 83.44% 85.6% 86.28% —

M. Janota Machine Learning for Quantifiers 35 / 47

Towards Infinite Models

SMT Models: Constants

c < d

M. Janota Machine Learning for Quantifiers 36 / 47

SMT Models: Constants

c < d

c = 0, d = 1

M. Janota Machine Learning for Quantifiers 36 / 47

SMT Models: Functions

f (0) < f (1)

M. Janota Machine Learning for Quantifiers 37 / 47

SMT Models: Functions

f (0) < f (1)

fx ≜ (1 if x = 1 else 0)

M. Janota Machine Learning for Quantifiers 37 / 47

SMT Models: Quantifiers

(∀x)(fx ≤ x)

M. Janota Machine Learning for Quantifiers 38 / 47

SMT Models: Quantifiers

(∀x)(fx ≤ x) fx ≜ x

M. Janota Machine Learning for Quantifiers 38 / 47

SMT Models: Quantifiers

(∀x)(fx < x)

M. Janota Machine Learning for Quantifiers 39 / 47

SMT Models: Quantifiers

(∀x)(fx < x)
Not Solved!

M. Janota Machine Learning for Quantifiers 39 / 47

Learn infinite models from finite ones?

M. Janota Machine Learning for Quantifiers 40 / 47

Model-Based Guided Quantifier Instantiation

For ∀xϕ construct a sequence of:

• candidate models Mi

• counterexample instantiations σi

• s.t. Mi |=
∧
j∈1..i−1 ϕ[x/σj]

• s.t. Mi ̸|= ϕ[x/σi]

M. Janota Machine Learning for Quantifiers 41 / 47

Model-Based Guided Quantifier Instantiation

For ∀xϕ construct a sequence of:

• candidate models Mi
• counterexample instantiations σi

• s.t. Mi |=
∧
j∈1..i−1 ϕ[x/σj]

• s.t. Mi ̸|= ϕ[x/σi]

M. Janota Machine Learning for Quantifiers 41 / 47

Model-Based Guided Quantifier Instantiation

For ∀xϕ construct a sequence of:

• candidate models Mi
• counterexample instantiations σi

• s.t. Mi |=
∧
j∈1..i−1 ϕ[x/σj]

• s.t. Mi ̸|= ϕ[x/σi]

M. Janota Machine Learning for Quantifiers 41 / 47

Model-Based Guided Quantifier Instantiation

For ∀xϕ construct a sequence of:

• candidate models Mi
• counterexample instantiations σi

• s.t. Mi |=
∧
j∈1..i−1 ϕ[x/σj]

• s.t. Mi ̸|= ϕ[x/σi]

M. Janota Machine Learning for Quantifiers 41 / 47

Example

(∀x)(fx > x)

∧
j∈1..i−1 ϕ[x/σj] Mi σi

true fx ≜ 0 x 7→ 0

M. Janota Machine Learning for Quantifiers 42 / 47

Example

(∀x)(fx > x)

∧
j∈1..i−1 ϕ[x/σj] Mi σi

f (0) > 0

M. Janota Machine Learning for Quantifiers 42 / 47

Example

(∀x)(fx > x)

∧
j∈1..i−1 ϕ[x/σj] Mi σi

f (0) > 0 fx ≜ 1 x 7→ 1

M. Janota Machine Learning for Quantifiers 42 / 47

Example

(∀x)(fx > x)

∧
j∈1..i−1 ϕ[x/σj] Mi σi

f (0) > 0

f (1) > 1

fx ≜ (x = 0 ? 1 : 2) x 7→ 2

M. Janota Machine Learning for Quantifiers 42 / 47

Example

(∀x)(fx > x)

∧
j∈1..i−1 ϕ[x/σj] Mi σi

f (0) > 0

f (1) > 1

f (2) > 2

fx ≜ (x = 0 ? 1
: (x = 1 ? 2 : 3))

M. Janota Machine Learning for Quantifiers 42 / 47

Example

(∀x)(fx > x)

∧
j∈1..i−1 ϕ[x/σj] Mi σi

f (0) > 0

f (1) > 1

f (2) > 2

fx ≜ (x = 0 ? 1
: (x = 1 ? 2 : 3))

Déjà Vu

M. Janota Machine Learning for Quantifiers 42 / 47

Example: Generalization

(∀x)(fx > x)

0

1 2

x + 1

M. Janota Machine Learning for Quantifiers 43 / 47

Example: Generalization

(∀x)(fx > x)

0 1

2

x + 1

M. Janota Machine Learning for Quantifiers 43 / 47

Example: Generalization

(∀x)(fx > x)

0 1 2

x + 1

M. Janota Machine Learning for Quantifiers 43 / 47

Example: Generalization

(∀x)(fx > x)

0 1 2

x + 1

M. Janota Machine Learning for Quantifiers 43 / 47

Generalization for Functions

• Sort points lexicographically

• Keep the same hyper-plane as long as possible

• Otherwise start a new hyper-plane.

• For LIA: linear Diophantine equations,
solvable in polynomial time

0 1 2 3 4

M. Janota Machine Learning for Quantifiers 44 / 47

Generalization for Functions

• Sort points lexicographically

• Keep the same hyper-plane as long as possible

• Otherwise start a new hyper-plane.

• For LIA: linear Diophantine equations,
solvable in polynomial time

0 1 2 3 4

M. Janota Machine Learning for Quantifiers 44 / 47

Generalization for Functions

• Sort points lexicographically

• Keep the same hyper-plane as long as possible

• Otherwise start a new hyper-plane.

• For LIA: linear Diophantine equations,
solvable in polynomial time

0

1 2 3 4

M. Janota Machine Learning for Quantifiers 44 / 47

Generalization for Functions

• Sort points lexicographically

• Keep the same hyper-plane as long as possible

• Otherwise start a new hyper-plane.

• For LIA: linear Diophantine equations,
solvable in polynomial time

0 1

2 3 4

M. Janota Machine Learning for Quantifiers 44 / 47

Generalization for Functions

• Sort points lexicographically

• Keep the same hyper-plane as long as possible

• Otherwise start a new hyper-plane.

• For LIA: linear Diophantine equations,
solvable in polynomial time

0 1 2

3 4

M. Janota Machine Learning for Quantifiers 44 / 47

Generalization for Functions

• Sort points lexicographically

• Keep the same hyper-plane as long as possible

• Otherwise start a new hyper-plane.

• For LIA: linear Diophantine equations,
solvable in polynomial time

0 1 2

3 4

M. Janota Machine Learning for Quantifiers 44 / 47

Generalization for Functions

• Sort points lexicographically

• Keep the same hyper-plane as long as possible

• Otherwise start a new hyper-plane.

• For LIA: linear Diophantine equations,
solvable in polynomial time

0 1 2 3

4

M. Janota Machine Learning for Quantifiers 44 / 47

Generalization for Functions

• Sort points lexicographically

• Keep the same hyper-plane as long as possible

• Otherwise start a new hyper-plane.

• For LIA: linear Diophantine equations,
solvable in polynomial time

0 1 2 3 4

M. Janota Machine Learning for Quantifiers 44 / 47

Generalization for Functions

• Sort points lexicographically

• Keep the same hyper-plane as long as possible

• Otherwise start a new hyper-plane.

• For LIA: linear Diophantine equations,
solvable in polynomial time

0 1 2 3 4

M. Janota Machine Learning for Quantifiers 44 / 47

Generalization for Predicates

• Split recursively by hyper-planes

• until all positive or all negative

M. Janota Machine Learning for Quantifiers 45 / 47

Generalization for Predicates

• Split recursively by hyper-planes
• until all positive or all negative

−10

−5

0

5

10

−10 −5 0 5 10
x

y

M. Janota Machine Learning for Quantifiers 45 / 47

Generalization for Predicates

• Split recursively by hyper-planes
• until all positive or all negative

−10

−5

0

5

10

−10 −5 0 5 10
x

y

M. Janota Machine Learning for Quantifiers 45 / 47

Generalization for Predicates

• Split recursively by hyper-planes
• until all positive or all negative

−10

−5

0

5

10

−10 −5 0 5 10
x

y

M. Janota Machine Learning for Quantifiers 45 / 47

Generalization for Predicates

• Split recursively by hyper-planes
• until all positive or all negative

−10

−5

0

5

10

−10 −5 0 5 10
x

y

M. Janota Machine Learning for Quantifiers 45 / 47

Results UFLIA

• Implemented in cvc5

• Run on [J. et al., 2023]

solver SAT UNSAT total

standard MBQI 18,843 7,863 26,706
standard MBQI 18,843 7,863 26,706
ours smart MBQI 31,977 7,863 39,840
Z3 28,380 7,482 35,862

M. Janota Machine Learning for Quantifiers 46 / 47

Summary

• Lesson learned from QBF:
It might be useful to instantiate by more complicated objects,
which can be learned.

• In SMT instantiations can be ordered by ML.

• Synthesizing new terms is possible, but harder.

• Synthesizing new models is also possible but
What are the appropriate ML techniques?

M. Janota Machine Learning for Quantifiers 47 / 47

Summary

• Lesson learned from QBF:
It might be useful to instantiate by more complicated objects,
which can be learned.

• In SMT instantiations can be ordered by ML.

• Synthesizing new terms is possible, but harder.

• Synthesizing new models is also possible but
What are the appropriate ML techniques?

M. Janota Machine Learning for Quantifiers 47 / 47

Summary

• Lesson learned from QBF:
It might be useful to instantiate by more complicated objects,
which can be learned.

• In SMT instantiations can be ordered by ML.

• Synthesizing new terms is possible, but harder.

• Synthesizing new models is also possible but
What are the appropriate ML techniques?

M. Janota Machine Learning for Quantifiers 47 / 47

Summary

• Lesson learned from QBF:
It might be useful to instantiate by more complicated objects,
which can be learned.

• In SMT instantiations can be ordered by ML.

• Synthesizing new terms is possible, but harder.

• Synthesizing new models is also possible but
What are the appropriate ML techniques?

M. Janota Machine Learning for Quantifiers 47 / 47

J., M. (2018).

Towards generalization in QBF solving via machine
learning.

J., M., Brown, C. E., and Kaliszyk, C. (2023).

A benchmark for infinite models in SMT.

J., M. and Marques-Silva, J. (2011).

Abstraction-based algorithm for 2QBF.

J., M., Piepenbrock, J., and Piotrowski, B. (2022).

Towards learning quantifier instantiation in SMT.

Piepenbrock, J., Urban, J., Korovin, K., Olšák, M., Heskes, T., and
J., M. (2025).

Invariant neural architecture for learning term synthesis
in instantiation proving.

M. Janota Machine Learning for Quantifiers 47 / 47

	Intro: QBF, Expansion, Games, Careful expansion
	Solving QBF
	Learning in QBF
	Targeting SMT
	Towards Synthesizing Terms
	Towards Infinite Models

