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Abstract
This paper applies machine learning (ML) to solve quantified satisfiability modulo theories (SMT)
problems more efficiently. The motivating idea is that the solver should learn from already solved
formulas to solve new ones. This is especially relevant in classes of similar formulas.

We focus on the enumerative instantiation—a well-established approach to solving quantified
formulas anchored in the Herbrand’s theorem. The task is to select the right ground terms to be
instantiated. In ML parlance, this means learning to rank ground terms. We devise a series of
features of the considered terms and train on them using boosted decision trees. In particular, we
integrate the LightGBM library into the SMT solver cvc5. The experimental results demonstrate
that the ML-guided solver enables us to solve more formulas than the base solver and reduce the
number of quantifier instantiations. We also do an ablation study on the features used in the machine
learning component, showing the contributions of the various additions.
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1 Introduction

Solving formulas containing quantifiers in the context of Satisfiability Modulo Theories (SMT)
is famously difficult. This difficulty is inherent since quantifiers lead to undecidability or high
computational complexity [15, 23]. Nevertheless, quantifiers are indispensable in practical
problems. Notably, in software verification, they are used to express properties of memory,
e.g., that an array is sorted. This paper tackles the question: Can machine learning (ML)
make SMT solvers more efficient in the context of quantifiers?

The potential of ML is to enable the solver to learn from problem instances that it has
already solved. In contrast, current SMT solvers only take into account one formula during
solving. However, integrating ML into this context is not straightforward. We are facing two
main challenges:

1. ML operates in an approximate setting, while SMT is anchored in a rigorous background
where inference steps need to follow the logic in question. This means the solver inference
steps must be followed and the ML integrated into the solver framework.

2. SMT solvers make millions of decisions for a single problem. How can ML be integrated
without dramatically slowing down the solver?
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Figure 1 Schematic of the SMT solver with machine learning guidance for quantifier instantiation.

This paper proposes a design that enables ML to steer the state-of-the-art SMT solver
cvc5 [2]1 in quantifier instantiation (see Figure 1).

A general technique to handle quantifiers in SMT is to gradually instantiate the quantified
sub-formulas with ground terms until obtaining contradiction. For instance the formula
(∀x f(x) > x) ∧ (∀y f(y) < 0) is readily refuted by instantiating both x and y with 0.

The terms to be used in instantiations may be chosen either by making use of syntactic
properties, e.g. by e-matching [11], or by utilizing semantic properties, e.g. model-based
quantifier instantiation [16]. Interestingly, the complexity of these techniques may not always
pay off: simple enumerative instantiation of terms can often give better results [36, 19]. For
all of these techniques, the most important challenge is a large number of possible terms that
can be chosen for instantiation, especially in later stages of solving.

In recent years, ML has been applied in countless settings, from computer vision [22] to
natural language processing [12]. There is also work to learn decision-making for first-order
theorem proving, cf. [18], but the use of ML for SMT guidance still has large untapped
potential.

In this work, we use machine learning to improve the performance of cvc5 in real-time, by
learning a scoring function for terms that guides the quantifier instantiation process. This
addresses our first challenge, i.e., how to use an inherently approximate method within SMT.
The second challenge of avoiding dramatic slowdown by ML within the solver is achieved by
the choice of features, ML model, and its tight integration into the solver.
This paper has the following primary contributions.
1. We design an integration of ML guidance for quantifier instantiation in the context of

SMT. In particular, the enumerative instantiation is guided by ML during the run of the
solver, while learning from existing solutions to already solved problems.

2. We implement the proposed method in cvc5 and the implementation shows a significant
increase in the number of solved instances and lowers the number of instantiations needed
for many proofs.

2 Background

Throughout the paper we assume familiarity with first-order logic, in particular, with
satisfiability modulo theories (SMT) [6]. Formulas with no quantifiers, called ground formulas,
are solved using the DPLL(T) paradigm [29]. DPLL(T) abstracts first-order logic atoms
as propositional variables enabling the use of a SAT solver to reason about the Boolean
structure of the formula and theory solvers to reason about theories.

SMT solvers reason about quantifiers by instantiating with ground terms to strengthen
the ground part of the formula. Effectively, a quantified sub-formula or quantified expression

1 cvc5 is a successor to CVC4 [4, 2].
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(∀x1 . . . xn φ) is a source of lemmas of the form (∀x1 . . . xn φ) ⇒ φ{x1 7→ t1, . . . , xn 7→ tn},
where φ is quantifier-free and ti are ground terms. For instance, ∀x f(x) > 0 may be
instantiated as (∀x f(x) > 0) ⇒ f(0) > 0. For simplicity, assume that quantifiers are
removed on preprocessing by Skolemization.

This approach results in a loop that moves back and forth between a ground solver and
the instantiation module; see Figure 1. The ground solver only sees quantifiers as propositions
that either should hold or not. Once the ground solver finds a satisfying assignment for
the ground part of the formula, control is handed over to the instantiation module, which
generates new instances of the quantified sub-formulas that currently should hold. This
strengthens the ground part of the formula and the process repeats. Our contribution is to
provide ML advice for the instantiation module with the aim of suggesting instantiations that
lead to unsatisfiability in the ground solver.

There is a bevy of methods for choosing instantiations. For decidable fragments, dedicated
approaches exist, e.g., for bit-vectors or linear arithmetic [37, 13, 26, 7]. General quantifiers
are most notably tackled by e-matching, based on syntactic properties of the terms [11] and
model-based [16] or conflict-based [38] instantiation, relying on the semantics of the formula.
Niemetz et al apply syntax-guided instantiation term generation [27].

The instantiation method we focus on here is enumerative instantiation. While the
method is probably the most straightforward one, it has good performance on many SMT
problem categories and adds to the robustness of the solver [36].

2.1 Enumerative Instantiation

Herbrand’s theorem [17] guarantees that for an unsatisfiable first-order logic formula, fi-
nitely many instantiations are sufficient to obtain an unsatisfiable ground part, and, these
instantiations only need to use the Herbrand universe. Completeness is not guaranteed in
theories (e.g. ∀x :R x2 6= 2). However, the application of the theorem in SMT is justified as
it provides a viable way to deal with the complex problem of quantifier instantiation.

Reynolds et al. invoke a stronger variant of Herbrand’s theorem that enables a more
practical method for quantifier instantiation [36]. It is sufficient to consider only the terms
already within the ground part of the formula generated so far. This insight leads to the
enumerative instantiation strategy, the technique we augment with machine learning guidance
in this work. For a formula G ∧ ∀x1 . . . xn φ, with G ground, collect all ground terms T in
G and strengthen G by an instantiation of φ by an n-tuple t1, . . . , tn with ti ∈ T ; repeat
the process until G becomes unsatisfiable or until resources are exhausted. The tuples are
enumerated systematically to guarantee fairness.

As a motivational (toy) example consider the following conjunctive set of formulas within
the logic of uninterpreted functions and linear integer arithmetic (UFLIA).

{f(d) > f(d+ 2), c ≤ 0 ∨ ∀x f(x) < f(x+ 1)︸ ︷︷ ︸
q

}

For the ground solver, the quantifier is abstracted as a Boolean constant q and the instantiation
module is responsible for adding lemmas of the form q ⇒ f(t) < f(t+ 1) for some ground
term t. Consider a context where the solver decides that ¬(c ≤ 0), which forces q to be true.
Ideally, in this situation the solver instantiates x first with d and then with d+ 1, resulting

SAT 2022
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Figure 2 Schematic example of the term enumeration process with term tuple ordering based on
the sum of term rankings. The task of the ML model is to take features based on the quantified
formula, the variable, the terms, and the context to score the terms, thus changing the term ranking
to deliver better instantiations. In cases where multiple quantifiers have to be instantiated at the
same time, we instantiate with term tuples, which are ordered by the sum of the rankings of the
individual terms.

in the following steps:

ground formula additional ground terms
{c ≤ 0 ∨ q, f(d) > f(d+ 2)} {c, 0, d, d+ 2, f(d), f(d+ 2)}
{q ⇒ f(d) < f(d+ 1)} {d+ 1, f(d+ 1)}
{q ⇒ f(d+ 1) < f(d+ 2)} {d+ 2, f(d+ 2)}

From transitivity of >, the ground part gives a contradiction for the current context,
forcing q to false and c ≤ 0 to true. Already this small example shows the difficulties we
are facing. For instance, instantiating with the term f(d+ 2) results in q ⇒ f(f(d+ 2)) <
f(f(d+ 2) + 1), which not only is unhelpful but also produces a harder ground instance.

Individual instantiations lead to the addition of new ground terms into a sequence. We
refer to the position of a term in the sequence as its age; in the above example, the term d has
age 0. Terms added by the same instantiation are in the same phase; in the above example,
the terms d+ 1, f(d+ 1) are added in phase 2.

As an additional filter, cvc5 uses a technique called relevant domain, introduced by Ge
and de Moura [16]. Intuitively, a term becomes relevant for a certain quantified variable
if it appears in the same position as the variable, e.g., if f(x) appears in the quantified
formula and there is a ground term f(t), the sub-term t is relevant for x; this is further
closed by equality. By default, cvc5 first considers only instantiations by terms from the
relevant domain and only after that moves on to the rest. Formulas with multiple quantified
sub-formulas are solved by instantiating the sub-formulas independently but in a fair manner.

3 Learning Ordering of Terms

When using the enumerative instantiation strategy, the SMT solver uses an ordering of the
available terms (by default, this is primarily based on the age of the terms) and enumerates
terms in this order, trying instantiations. As shown in Figure 2, when there are multiple
quantifiers that need to be instantiated with a tuple of terms, the solver uses the sum of the
rankings of the individual terms to determine the ranking of the term tuple [19].
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Cvc5 considers one quantified expression at a time. In this work, we also only consider
the reranking of terms for a single variable at a time.2 Thus, at each decision point of the
quantifier module, we consider the current quantified expression Q, the variable V, the term
T, and the wider context Context, containing all other quantified expressions and the ground
part of the problem. Featurization is then viewed as a function F : (Q,V, T,Context)→ Rn.

The machine learning heuristic’s task is to reorder the term candidate lists for each
quantifier so that more useful instantiations are tried earlier (see Figure 2). For this, we use
a scoring function and rank the candidates according to this score. This scoring function
S : F → [0, 1] takes as its input the features obtained by applying the featurization F to a
tuple (Q,V, T,Context).

The returned score is intended to reflect how likely it is that term T was used to instantiate
variable V in quantified expression Q with the context Context in the final proof. The training
data for the ML model is based on previously found proofs, so that we can extract a label
for each tuple (Q,V, T,Context), based on what decision was made in a known proof of the
problem. This label is 1 if the instantiation that the tuple represents was used in a successful
proof (which we will call a positive example) or 0 otherwise. During solving, the scoring
function S is applied to each candidate term. The terms are then sorted according to their
score by stable sort, i.e., equally scored terms remain in their original order (see Figure 2).

The scoring function S is implemented as an ML-model. Specifically, we experimented
with a logistic regression model and with gradient boosted decision trees (GBDT). In contrast
to popular neural network methods, these methods are sufficiently fast to run at solving
time within the solver loop [40]. In the initial experiments, the boosted trees performed
significantly better than logistic regression, thus we keep it for the rest of our experiments.

GBDT uses an ensemble of decision trees, where decisions of all the individual trees are
aggregated into a more reliable decision. Gradient boosted trees are widely used in machine
learning applications. In particular, this algorithm is one of the most successful approaches in
machine learning competitions [30]. They have also been used for machine learning guidance
in first-order logic [18, 33]. After training, we use this ensemble of decision trees to predict
the label of each candidate term. Ideally, the trees predict 1 if the candidate leads to a proof
and 0 if it does not. In practice, the prediction of the model is a float number between 0 and
1, which can be interpreted as a probability. We used the library LightGBM [21], a fast and
efficient implementation of the GBDT algorithm.

3.1 Featurization
The GBDT algorithm makes decisions based on a representation of the state of the solver,
the relevant quantified expression and the term that is being considered. This representation
of the data is called the featurization of the data. There are several categories of features
with different properties. First, we list them here, afterwards, there are subsections with
the details of the features in that category. Note that we use the single-letter abbreviations
following the categories to denote them in figures in later sections. The designed features
provide a simple characterization of the training examples. However, they are extracted
using existing, efficiently implemented mechanisms of cvc5, which makes the process fast
enough. All these design decisions enable us to perform ML prediction online, during the
proof search. In Section 4.3.3, we show an ablation study, where impacts of each feature
category for the performance of the solver can be observed.

2 The enumeration still creates tuples of terms to instantiate quantified expressions with multiple variables.

SAT 2022
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Table 1 Short description of feature categories. The abbreviations are later used to concisely
refer to these feature categories.

Category Name Description Abbreviation

Procedural Features Data from the solver, such as the age of
terms, number of times a term was tried. p

Bag-of-words Features Amounts of nodes of certain type in
quantified expression or term. b

Context Features The parent symbols of variables and the
parents of the head symbols in candidate terms. c

Numeral Features The minimum and maximum number used in
quantified expression or term. n

Parent Features
(Parent Label Propagation)

Terms that are necessary to create the
final proof term are also labeled as
positive examples.

P

3.1.1 Procedural Features

The first category of feature is the set of procedural features, properties of the solving process
that can be quickly calculated within cvc5. Several of these features were explained in
Section 2.1. In this category are the age and phase of the term. In addition to these, the
features varFrequency, tried and depth are used. VarFrequency indicates how many times the
variable (V ) under consideration appears in the quantified expression (Q). The tried feature
indicates how many times this term (T ) was already tried within this quantified expression.
The depth is simply the syntactic depth of the term.

3.1.2 Bag of Words (BOW) Features

The Bag of Words features represent the number of occurrences of symbols in the given
quantified expression and term. In our design, uninterpreted symbols are treated anonymously
and interpreted symbols non-anonymously. This means that any interpreted symbol, such as
+ , will get its own feature whose value is the number of occurrences of the symbol in the
formula. Uninterpreted symbols, i.e., those that were introduced by the user are collapsed
into representative classes. For instance, all function symbols are represented by one class.
The numerals (interpreted constants) are a special case. While these are interpreted, there
are infinitely many of them and they therefore cannot have separate features, and therefore
are also collapsed into a single nodetype in this feature category. However, in the Numeral
Features (Section 3.1.4), we deal with numerals in a more semantic way.

For the calculation of BOW we use the abstract syntax tree (AST) of cvc5. For every
symbol appearing in terms and formulas cvc5 determines its kind. These kinds include, e.g.,
variable, skolem, not, and, plus, forall, and many others. We use these syntactic kinds to
define a bag-of-words-type featurizer BOW(x), where x is a term or a quantified formula, and
the information returned by BOW consists of counts of kinds of symbols appearing in x. For
example, BOW(∀x (2 + x = skl1 + 3)) = {forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}.
Non-occurring kinds are set to 0 in this representation. We remark that cvc5 represents
formulas as directed acyclic graphs, rather than trees, which is also reflected here, i.e., any
repeated sub-formula is counted only once.
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Figure 3 Schematic representation of the context features. The variable context aggregates which
symbols occur as the parent of the variable in the current quantified expression. The term head
symbol context aggregates which symbols occur in the ground term registry as parents of the head
symbol of the candidate term under consideration.

3.1.3 Context Features
The third category of features is the set of context features (see Figure 3). There are two
types of context features used. The first is the variable context, which aggregates information
about which symbols are used as parents of the variable in the current quantified expression.
The second type is the term head symbol context, which contains information about which
symbols are parents of the head symbol of the current candidate term in the ground term
registry of the solver: this gives information about the whole problem, even across quantified
expressions. The feature vectors are sparse, in the sense that most nodetypes will not show
up in every context: most of the possible features will be 0. In the figure we have simplified
mostly to the symbols that do appear, but for the ML predictor many features are 0.

3.1.4 Numeral Features
While in the BOW Features the numerals in the problems are all mapped to one single
nodetype, this is not optimal. Especially because the benchmark problems we test on are
integer arithmetic problems, giving the machine learning component some information about
which numbers are in the formula should be useful. To allow the machine learning system
to do some elementary comparison operations on the terms it needs to decide the score of,
we add 4 additional features, which are the minimum and maximum number in the current
quantified expression (Q) and the current candidate term (T). When there are no nodes of
numeral type in Q or T, we fill in the features with a fixed combination of numbers where
the minimum is higher than the maximum, so that it can be distinguished from the rest of
the cases.

3.1.5 Parent Label Propagation
The last setting in our algorithm concerns the parents of the proof terms. Note that this
is a different kind of setting than the features before. Here we are concerned about which
candidate terms are counted as positive examples (that is to say, for which the score function
should predict 1) and which are negative examples (for which the prediction should be 0).

When the base solver is run and produces a proof, a set of instantiations is obtained that
leads to a contradiction. However, these terms are created by iterations of the enumeration
loop, creating more and more terms from the Herbrand universe. It may be the case that
these final instantiations cannot be created in one iteration. We may need more than 1
instantiation to create the final instantiated term that solves the problem. For example

SAT 2022
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Figure 4 Example instantiation process that shows the difference between a term that constitutes
a proof and the process of getting to the point where it is possible to instantiate that term within
the cvc5 enumeration setup.

in Figure 4, we see that although instantiating with x 7→ 6 will expose the contradiction,
the ground term 6 is not available at the beginning of solving. Instantiating with 0 at the
beginning makes the term 2 available. Instantiating with 2 makes the term 6 available, which
leads to a contradiction. To reflect this, we propagate the positive label of these instantiations
(i.e. 6) to the parent instantiations, i.e., the instantiations that were done to create the final
instantiation candidate terms, 2 and 0 in the example from Figure 4.

4 Experimental Evaluation

The SMT solver we augment with ML-guided enumerative instantiation is cvc5. It implements
multiple techniques for quantifier instantiation (see Section 2). Due to the inherent difficulty
of the overall problem, it is not the case that one technique would be better than another
one. On the contrary, the techniques exhibit a high degree of orthogonality in terms of
the number of solved instances [36, 19]. Therefore, it is meaningful to focus on improving
the techniques independently of one another. In our scenario, we let the solver use the
enumeration technique combined with the relevant domain heuristic (Section 2.1); all the
other techniques are explicitly turned off, which also lets us more clearly isolate the effect of
machine learning guidance.

We refer to cvc5 with this baseline strategy as the base solver. We remark that this setup
alone is already a very strong solver, often outperforming more complex techniques, as shown
in the literature [19]. The objective of the evaluation is to compare the base solver with the
base solver augmented with ML guidance.

A crucial prerequisite to training a strong ML model is to have a sizeable, high-quality
set of training examples. They can be collected by running the solver on available problems
and by recording which instantiations were positive (appeared in a proof) and which were
negative (redundant).

Note that the notion of a positive or negative example is not strict here since a single
problem may have multiple alternative proofs resulting in different sets of positives and
negatives. Moreover, the solver may arrive at a given proof in multiple ways, performing
the same set of useful instantiations but different sets of redundant ones, which results in a
different collections of negative examples.

Based on these observations, it is clear that in order to collect a rich and illustrative set of
training examples, it is beneficial to run the solver on a given set of problems multiple times
in varied ways, which will result in multiple alternative proofs and proof searches. Thus,
we establish the following methodology for collecting the training data. First, an unguided
solver is run on a given set of problems. The data recorded from these proof attempts give
an initial set of training examples, which is used to train an initial ML-model. Then, the
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Algorithm 1 Incremental solving-training feedback-loop ended with solving holdout problems.

Require: target problems: Ptarget, holdout problems: Pholdout, number of iterations: N ,
grid of hyper-parameters: Hgrid

1: M ← {} . empty initial machine-learning model
2: D ← {} . empty initial set of training examples
3: for i← 0 to N − 1 do
4: L← Solve(Ptarget,M) . solve target problems, save proofs and statistics
5: D ← D ∪ExtractTrainingExamples(L) . update training data
6: H← GridSearch(D,Hgrid) . find a good set of training hyper-parameters
7: M ← TrainModel(D,H) . train a new model on all training examples
8: Solve(Pholdout,M) . solve holdout problems

solver – this time guided by the ML-model – is run again on the problems. This gives new
training examples augmenting the database. Solving and training may be interleaved an
arbitrary number of times. It constitutes a positive feedback loop – in each iteration, the
solver is guided by a new, different, and hopefully stronger ML-model which results in a
growing and varied training set. A similar looping-style approach was already used in the
context of automated theorem proving [33, 41].

In the evaluation, we focus on two separate, but equally important, goals:
1. the cumulative goal: solve automatically as many of the problems as possible over time.

This is done by running the ML-guided solver multiple times over them and improving it
by training the ML model on data collected across the runs. In this setting we gradually
solve more problems, that the base solver could not prove.

2. the single-instance goal: evaluate the ability of the learning model to improve the solver
on unseen problems.

The importance of the single-instance goal is clear—this is how traditionally improvement
in SMT is measured, i.e., how many more problem instances are solved. Here we emphasize
that the cumulative goal is just as important. Indeed, in many cases users wish to solve a
group of formulas and are happy to leave the solver work on them for an extended period
of time. This is particularly true for groups of similar formulas. This might be the case
for example for verification conditions coming from a certain piece of software that is being
verified. In such scenarios, the user is not interested if the SMT solver solves many instances
in a competition but is interested in how many instances are solved from this particular set.

Note that in a traditional setting it is unclear how to improve on the cumulative goal.
In contrast, an ML-guided SMT solver naturally has the opportunity to generalize from
previously solved (easier) problems to the harder ones.

4.1 Experimental Setting

To assess the performance of our method for both these goals, we use the looping-style
approach described above, additionally splitting the initial set of problems into target set
and holdout set. The problems from the targets that are used to gradually collect training
examples for training the ML model to be used in the next iteration. The cumulative
goal is measured by how many more instances are gradually sold from the target set. The
single-instance goal is measured by the base solver with the solver guided by the ML-model
all obtained in the last iteration.

SAT 2022
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The looping procedure is presented in Algorithm 1. The function Solve(P,M) runs the
solver over problems in P , using the ML-model M for guidance. When M = {}, in the initial
round 0, Solve(P,M) runs the solver with the standard, age-based ordering of the terms in
place of the ML-guidance. In the experiments, the number of iterations N is set to 20.

The used ML model (LightGBM) has multiple hyper-parameters governing its training,
which potentially significantly influence the predictive performance of the model and therefore
should be tuned [43]. We fix a set of several important parameters and candidate values for
them (Hgrid). These are the following: learning_rate: 0.01, 0.05, 0.1, num_leaves: 16, 64,
256, max_bin: 16, 64, 256.

After each update of the training set in the loop, a grid-search is used (function Grid-
Search) to establish the best hyper-parameters (H) for the next training (according to
the AUC metric [14] on a random subset of validation examples). The number of trees in
LightGBM model is an important parameter, however we do not include this parameter in
the grid search and just fix its value to 100. Increasing the number of trees typically improves
the “offline” ML performance metrics, however, it also slows down producing the predictions,
which in turn may decrease the number of solutions found within a given time limit.

A large majority of the instantiations tried during the proof attempts are redundant,
which results in a significant disproportion between numbers of the positive and the negative
examples being collected. To expose the ML-model more to the positives, we under-sample
the negatives so that its number is kept below 10 × number of positives.

In experiments, the ML-guided solver is compared to the base solver. However, when
considering the cumulative number of problems solved across multiple iterations, one should
investigate whether the extra problems solved are really due to the learned strategy and not
only due to the randomness injected into the process. Thus, to perform an ablation study,
we additionally compare the ML-guided solver with a randomized solver. It is the same
as the base solver with the following exception: it uses the predefined, age-based ordering
additionally swapping each term randomly with a term next to it in the ranking with the
probability 0.1. This parameter is selected heuristically: we want to have a solver which is
similar to the well-performing, base solver, and at the same time is non-deterministic to some
degree. Our initial experiments also indicate that deviating too much from the age-based
ordering is detrimental to the solver: choosing a totally random order leads to a significant
decrease in the number of solved instances (around 30%).

In experiments, we fix a timeout of 60 s per one proof attempt for all the solvers. Note that
the ML-guided solver spends a non-negligible amount of time just on producing predictions
from the ML-model, which means that it will be able to perform fewer steps in its proof
searches than the unguided solver. However, to have a realistic evaluation scenario, we give
the same timeout for each solver, with the outlook that the ML-guided solver will compensate
for the slowdown with its learned strategy.

4.2 Data for Evaluation
For evaluation, we use six benchmarks from SMT-LIB [5]: (1) UFLIA boogie, (2) UFLIA
grasshopper, (3) UFLIA tokeneer, (4) UFNIA sledgehammer, (5) UFNIA Preiner, (6) UFNIA
vcc havoc.

UFNIA and UFLIA refer here to two different SMT logics: non-linear and linear in-
teger arithmetic, respectively, with uninterpreted function symbols. (1) originates from
various problems from formal verification formulated in an intermediate verification language
Boogie [3]. (2) is a benchmark derived from a software verification project concerning
heap-manipulating programs [35]. (3) was derived from a security verification project for
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biometric identification software [24]. (4) originates from Sledgehammer, a component of
the Isabelle/HOL interactive theorem prover that enables applying SMT to discharge goals
arising in interactive proofs [8]. The Sledgehammer problems come from various areas
of mathematics and computer science. (5) was a project on verifying rewriting rules for
bit-vectors irrespective of bit-width [28]. (6) are benchmarks taken from the VCC C program
verifier [10] and HAVOC [42], a heap-aware verifier for C programs.

Some of the problems from these benchmarks may be solved without performing any
instantiations. They are filtered out as not relevant for our evaluation. Then, the sizes of
the benchmarks are: UFLIA boogie: 1005, UFLIA grasshopper: 382, UFLIA tokeneer: 257,
UFNIA sledgehammer: 1329, UFNIA Preiner: 3897, UFNIA vcc havoc: 760. Each of the
benchmarks is randomly split into target and holdout parts (Ptarget, Pholdout) of sizes 75%
and 25%, respectively.

4.3 Results and Discussion
This section presents the results of the evaluation of the ML-guided solver with one initial
solving iteration performed by the unguided, base solver, and 19 training-solving iterations.
Because of the non-deterministic nature of the training procedure, each loop with the
ML-guided and the randomized solvers is run 3 times and the presented results are averaged.

The presentation of the results is divided into three subsections. The first two are
concerned with the cumulative and single-instance goals (see introduction to Section 4). The
last subsection presents an ablation study evaluating the importance of the different groups
of features (see Subsection 3.1).

4.3.1 Cumulative Goal
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Figure 5 Numbers of problems solved (y-axis) in the looping evaluation across twenty iterations
(x-axis) for six benchmarks. Dashed lines refer to numbers of problems solved in a given iteration;
solid lines refer to cumulative number of problems solved in a given iteration and all past iterations.

Figure 5 shows the number of solved instances for the considered families across the
iterations of the loop (see Algorithm 1). All, except for the last two, families demonstrate a
clear advantage of using ML-guidance. When focusing on the cumulative goal (solid lines),
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Table 2 Target problems solved cumulatively across all 20 iterations of the training-solving loop
by the randomized and the ML-guided solvers.

Randomized ML-guided Improvement (%) Number of problems

UFLIA boogie 41.0 157.6 284.4 754
UFLIA grasshopper 159.0 183.3 15.3 287
UFLIA tokeneer 83.0 90.0 8.4 193
UFNIA sledgehammer 243.5 258.0 6.0 997
UFNIA Preiner 1228.3 1245.7 1.4 4776
UFNIA vcc havoc 513.0 515.7 0.5 570

both the ML-guided and the randomized solver exhibit diminishing returns—eventually they
plateau. However, in the case of a randomized solver, a plateau occurs typically far earlier
than in the ML-guided case. This is likely explained by the ability of the ML-guidance to
keep inventing new approaches inspired by newly solved problems. In contrast, randomization
very quickly hits the wall since the original heuristic used by the base solver is already good.
This is further supported by the observation that the learned ML-model solves an increasing
number of the overall instances, whereas the randomized one solves roughly the same number
of problems in every iteration. More detailed numbers can be found in Table 2.

The last two families (UFNIA-Preiner, UFNIA-vcc-havoc) do not show any significant
improvements with ML-guidance. Possibly, this might be that we are simply too close to
the limits of what the solver can do in this configuration and other quantifier instantiation
methods need to be also considered (see discussion on the future work in Section 6). On the
contrary, UFLIA-boogie shows an exceptional improvement with ML-guidance and shows no
improvement by randomization.

4.3.2 Single-Instantiation Goal
Here we compare the base solver with the ML-guided solver using the ML-model obtained in
the last iteration of the evaluation loop. These results are calculated on the holdout set—
meaning, on a set of problems that were not used for training of the ML-model. Two types
of metrics are considered. First, we consider the number of instantiations that the solver
needed to do to solve the given problem—effectively, this is the abstract time, measuring
the quality of the guidance. Second, we consider the actual CPU time needed to solve the
problem. Figure 6 shows the results for these two metrics in two separate scatterplots. More
detailed numbers can be found in Table 3.

Table 3 Holdout problems solved by the base and ML-guided solvers.

Base ML-guided Improvement (%) Number of problems

UFLIA boogie 11 43.0 290.9 251
UFLIA grasshopper 59 66.6 12.9 95
UFLIA tokeneer 25 30.0 20.0 64
UFNIA sledgehammer 63 59.3 -5.8 332
UFNIA Preiner 383 394.3 3.0 1592
UFNIA vcc havoc 175 145.6 -16.8 190
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Figure 6 Comparison of number instantiations (left) and solving times (right) in log scale, where
each point is a testing problem. Points in dark gray stripes were solved by only one of the solvers.

The results for the number of instantiations clearly speak for ML-guidance as vast majority
of the points are below the diagonal. Further, the histograms for the ML-guided solver shows
a more even distribution of values, whereas the base solver is mainly stacked on timeouts. In
the case of time-evaluation, we still see a large portion of the instances under the diagonal
and the histogram is also more tilted towards lower values. However, we also do see some
worsening in terms of time. This is not entirely surprising because ML-guidance comes
at a price because the ML-model needs to be evaluated for each considered term in every
instantiation step. This is also a likely explanation for the worsening in the havoc family.
Nevertheless, given the highly positive results in terms of number of instantiations, better
engineering of the ML guidance has the potential of further improving these results.

4.3.3 Ablation Study
In this subsection we look at the importance of the different types of features that were
used to train the ML-model (see Subsection 3.1). For this we consider the boogie family
where ML-guidance had the most effect and therefore enables us to clearly observe the
effect of the different features. Since it would be impractical to try all combinations of the
features, we use the standard ablation approach, i.e., removing one feature type at a time
and observe the effect of this removal. The results are shown in Figure 7 and Table 4. The
ablation study relates two very clear messages. Firstly, the full set of features outperforms
all the other configurations. Importantly, the full set of features is also the best one on the
unseen problems (holdout set). Secondly, the performance is significantly worse without
the procedural features. This is definitely an interesting observation because the procedural
features depend on the previous decisions of the solver, e.g., the number of times a term
has been used so far. This observation indicates that is important for the ML-guidance to
“understand” its old decisions and therefore serves as a guideline for future research.
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Figure 7 Ablation analysis for different sets of features. The dataset used here is UFLIA boogie,
and the solid lines refer to the cumulative numbers of solved problems. The letters in the names of
runs refer to abbreviations in Table 1.

Table 4 UFLIA boogie problems solved with the ML-guided solver using different sets of features.

Features Solved cumulatively, in target Solved, in holdout

bncP 69.0 13.3
p 126.6 21.0
pP 132.6 27.6
pbnP 134.0 32.0
pbnc 145.3 33.3
pbncP 149.0 36.0

4.3.4 Training and Predicting Time
The time of training a single LightGBM model is negligible in comparison to the solving
time and it is in the order of minutes (it grows as more training examples are collected, but
it was below 10 minutes for all benchmark sets and iterations).

The total time required to run a full loop of 20 training-solving iterations (including the
hyper-parameter tuning) on 1 family depends on the number and complexity of problems in
each set. We ran all the loops parallelizing across 20 cores, and the total time for running
one loop was between 3 and 30 hours. To optimize this, one could apply early stopping when
observing diminishing returns.

5 Related Work

In recent years, machine learning has been widely applied in automated theorem proving.
Both gradient boosted trees and graph neural networks have been applied for premise selection
and guidance of the automated theorem prover E [18, 34] as well as in a reinforcement learning
setting for connection-style provers [20]. ML guidance was also used in the context of SAT
solving [40, 25]. In the context of SMT, ML has been mostly used outside of the solver. ML
advice was used to predict the best SMT solver out of a given portfolio and problem [39, 32].
Similarly, FastSMT uses ML to design strategies for the SMT solver Z3 [1], where the BOW
representation shows to be most successful, strengthening our choice of this representation.
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An unpublished technical report by Ouraou et al. [31] describes an attempt to apply
ML for quantifier instantiation in the SMT solver VeriT [9]. The report concludes that
the attempt was overall unsuccessful. This approach filters out instantiation terms deemed
redundant by the ML model. Further, a different set of features, more expensive, is considered.
In contrast, we apply stable ordering on the existing terms, which enables us to piggyback
on the existing good performance of the solver. Indeed, in our approach, if ML scores some
term candidates equally, they are kept in the same order as in the base solver and candidates
are never removed from the pool. Our choice of features lets us calculate quickly the ML
predictions online without being detrimental to the solving time.

6 Conclusions and Future Work

The paper designs an ML guidance of quantifier instantiation in the context of SMT for
problems with quantifiers. Quantifiers are a particularly interesting target for ML because
they typically cause undecidability and therefore represent an inherent challenge for auto-
mated solvers. In the presented approach, the ML advice influences the solver by ordering
the candidate terms to be considered for quantifier instantiations. The right choice of
instantiations is crucial for solving with quantifiers. Indeed, one particular formula is often
solved by a handful of instantiations in one ordering and it times-out after hundreds of
thousands of instantiations in another. The challenge we are facing here is both conceptual
and technological. At the conceptual level, the right set of features needs to be designed. At
the technological level, we need an integration of ML predication into the solver that does
not hinder the performance of the solver (ML prediction is run on each candidate term).

The experimental evaluation shows that our approach rises to the challenge. When run
on a set of formulas, cumulatively ML-guidance enables solving significantly more problems
than randomizing the solver. Improvements are also seen on a holdouts set (a set on which
the solver was not trained). ML advice enables us to solve more problems and reduce the
number of instantiations needed. The effect is most pronounced in the considered boogie
benchmark, where the final ML-model enables to solve nearly 3 times more testing problems,
and during training it accumulates more than 3 times more solved instances compared to a
randomized solver. We also achieve improved performance on the grasshopper, sledgehammer
and tokeneer benchmarks. In some families, we have seen worsening in the holdout set,
which could partially be explained by the CPU time overhead of running ML prediction.
This indicates that it would pay off to better engineer the predictor so that this overhead is
reduced. In an ablation study on the boogie benchmark, we show that each of our feature
categories contributes to the final results.

This paper shows that ML has the potential of boosting SMT solving and it opens a
number of opportunities for future work. Further ML models may be proposed for specific
logics (our method is generic). Direct interaction between quantifiers could be taken into
account. Rather than predicting an order of terms on a single variable, the ML model could
predict good combinations for tuples of variables. Last but not least, ML advice could be
applied to the other quantifier instantiation methods that are in use in the SMT field.
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