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Abstract—An interesting goal is for SMT solvers to produce
independently checkable proofs. SMT languages already have
expressive power that goes beyond first-order languages, and
further extensions would give even more expressive power by
allowing quantification over function types. Indeed, such exten-
sions are considered in the current proposal for the new standard
SMT3. Given the expressive power of SMT and its extensions,
careful thought must be given to the intended semantics and
an appropriate notion of proof. We propose higher-order set
theory as an appropriate interpretation of SMT (and extensions)
and obtain an adequate notion of SMT proofs via proof terms
in higher-order set theory. To demonstrate the strength of this
approach, we give a number of abstract examples that would
be difficult to handle by other notions of proof. To demonstrate
the practicality of the approach, we describe a family of integer
difference logic examples. We give proof terms for each of these
examples and check the correctness of the proofs using two proof
checkers: the proof checker distributed with the Proofgold system
and an alternative checker we have implemented that does not
rely on access to the Proofgold block chain.

Index Terms—SMT, proofs, proof checking, semantics

I. INTRODUCTION

A preliminary proposal for SMT-LIB Version 3.0 was
recently published online [1]. According to this proposal, there
are plans to extend SMT in serious ways, essentially bringing
an expressive power somewhere between Church’s simple type
theory [11] (by including arrow types) and the Calculus of
Inductive Constructions [8], [26], [27] (by including dependent
types and inductively defined types). In addition, a working
group on SMT proofs was announced [7] with the goal of
developing a standard for “producing independently checkable
proofs.” Indeed, producing proofs from SAT and SMT solvers
is a long-standing research challenge, cf. [16], [18], [19], [22],
[30]. Of course, having a standard notion of proof for SMT3
will require clarifying the intended semantics of SMT3 so
that there is precision about what sets of formulas should be
unsatisfiable (so there might be a “proof” of inconsistency) or
satisfiable (so there might be a “model”).

We consider the possibility of using higher-order set theory
via the well-known Werner-Aczel semantics of Calculus of
Inductive Constructions to provide both a clear semantics and
a notion of checkable proof that is likely to be sufficient for
SMT3 as well as for its possible future extensions. Proofs
are given in the form of proof terms, which are terms in
typed lambda calculus checkable against a proposition by a
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small set of rules (trusted kernel). We also give examples
to demonstrate the feasibility of this approach. The examples
range from the abstract (induction, Pigeonhole principle, and
Schroeder-Bernstein) to the concrete (integer difference logic
problems). The abstract examples demonstrate that proofs are
available for very general kinds of problems. The concrete
examples show that proof terms can be practically constructed
and checked for more realistic problems.

Fig. 1 overviews the paper’s main components. Starting
from an SMT problem and its proof, we translate them to
set theory, which is formalized into intuitionistic higher-order
logic (IHOL). Set theory represents a natural target for SMT,
e.g. the sort of integers is interpreted as the set of integers,
just as expected. Translating to IHOL gives us a small trusted
kernel of rules enabling an easy implementation of a proof-
checker. Indeed, Section VI compares the performance of the
existing Proofgold checker to a new checker. The set theo-
retical formulations in this paper are all written manually but
conceptualized in a way that an SMT solver could automate
such translation. In Section V-D we particularly focus on the
lazy-SMT approach to solving integer difference logic (IDL).

II. MODELS AND PROOFS IN GENERAL

In the best case scenario a logic provides a clear definition
of propositions, a rigorous definition of when a proposition
is provable and a class of interpretations with a satisfaction
relation. A proposition is considered valid if it is true in
every interpretation in the class. The logic satisfies soundness
and completeness if provability coincides with validity. The
most well-known case is classical first-order logic with any



number of proof systems and interpretations given by Tarski-
style semantics.

Church’s simple type theory provides another example of
such a logic. In Church’s original paper [11] there is a clear
definition of types, terms (some of which are propositions)
and a Hilbert style proof system. Henkin [17] later gave a
notion of semantics for which a completeness result could
be proven. (Technically Henkin’s interpretations were not
all sound with respect to Church’s functional extensionality
axiom, but this was corrected by Andrews [3].) An equality-
based version of Church’s simple type theory with a Hilbert
style proof system and a notion of interpretation (called
general models) following the Henkin-Andrews approach is
presented in [4]. Furthermore in [4] one can find proofs of
soundness, completeness and the usual results associated with
first-order logic such as the Lowenheim-Skolem Theorem and
the Compactness Theorem.

For more serious extensions of Church’s simple type theory
— such as the Calculus of Inductive Constructions — there does
not seem to be an effort to create a Henkin-Andrews notion
of interpretation for which one could prove soundness and
completeness. Instead research into semantics for type theories
has tended to go in the direction of category theory [21], [24]
and the most interesting interpretations are not classical.

In terms of soundness alone, there is one well-known
set-theoretic interpretation of type theories like the Calculus
of Inductive Constructions. The interpretation is classical,
extensional and satisfies proof irrelevance.! It was described
by Werner [33] and Aczel [2] with more details found in the
works of Werner, Lee and Barras [5], [25]. In this model, the
universe of propositions is interpreted as a two element set —
one of which is empty (having no proofs) representing “false”
and the other being a singleton (having one proof) representing
“true.” Being a two element set makes it essentially the same
as the interpretation of the type of booleans, as seems to be the
intended treatment of propositions as booleans in SMT. Types
are interpreted as sets (including the empty set) that live in
some universe closed under various set-theoretic operations.
Coq is a well-known proof assistant based on the Calculus of
Inductive Constructions (CIC). In the calculus of Coq, each
type universe is closed under the formation of (dependent)
function types and inductively defined types. The Werner-
Aczel style of interpretation would interpret each of Coq’s
universes as a set U closed under the corresponding set-
theoretic operations (e.g., if A and B are in the set U, then
the set B4 of functions is in the set U).

An alternative to attempting to obtain a Henkin-Andrews
style semantics for which soundness and completeness can be
proven is to simply take the standard set-theoretic semantics
but allow the model of the underlying set theory to change.
That is, instead of defining a proposition as valid if it is
true in every standard set-theoretic interpretation, one could
define it as being valid if it is true in every standard set-
theoretic interpretation living in a model of, say, first-order

IProof irrelevance means all proofs of a given proposition are equal.

ZFC. Validity would then become recursively enumerable
again and we clearly have a complete proof system (given
by any proof system for first-order ZFC). We explore this
possibility in this paper, except we use higher-order Tarski
Grothendieck (HOTG) as described in [10] instead of first-
order ZFC. The reason for using higher-order instead of
first-order is to make the theory finitely axiomatizable. (We
still obtain complete calculi via Henkin-Andrews semantics.)
The reason for using Tarski Grothendieck instead of Zermelo
Fraenkel is to ensure we have sufficient set-theoretic universes
for interpreting the type-theoretic universes of CIC. Different
possibilities for semantics of and proofs for higher-order SMT
are discussed in the unpublished paper [9], from which some
of the material for this article was taken.

III. HIGHER-ORDER SET THEORY WITH PROOF TERMS

We begin by giving a formulation of simple type theory
with proof terms, which we then extend to include set theory.
The types are simple types and the terms are simply typed \-
terms in the style of Church [11]. The proof system is a natural
deduction system [28] that admits proof terms in the usual
Curry-Howard-de Bruijn style [15], [20], [31]. We additionally
include constants and axioms for Tarski-Grothendieck style set
theory [32] similar to the formulation described in [10].

We have two base types ¢ (sets) and o (propositions). All
other types are function types of the form («f3) of functions
from « to 8. Such function types are often written as (o — 5).
When parentheses are omitted they should be replaced to the
right, e.g., wo is the type ((c0)).

Let V, be the set of variables of type a and S, be a
set of constants of type c. Assume we have countably many
variables at each type. We now define a family (A, ),, of terms
recursively, where s € A, means s is a term of type «.

e (Variables) If z € V,, then = € A,,.
e (Constants) If ¢ € S,, then ¢ € A,,.
(Application) If s € Ayp and t € A,, then (st) € Ag.
o (Abstraction) If z € V, and t € Ag, then (Az.t) € Ayp.
(Implication) If s € A, and t € A,, then (s — t) € A,.
e (Universal Quantification) If x € V, and t € A,, then
(Va.t) € A,.
We use common conventions for omitting parentheses and
abbreviating multiple binders. Propositions are terms in A,.
The set F(s) for free variables of a term is defined as usual,
as is the notion of capture avoiding substitution, denoted sy .
We consider two terms to be equal if they are the same up
to a-conversion (renaming of bound variables). The notion of
[Bn-conversion, denoted s=t, is also defined in the usual way.
When s,t are terms of a common type o, we write s =t as
notation for Vq.q s t — q t s where ¢ € Vaao \ (F(s) UF(2)).
We write L for Vp.p where p € V, and write —s for s — L.
Given a family of constants S and a set of propositions A,
we can give a notion of provability for intiutionistic higher-
order logic (IHOL) via a natural deduction system. We give
such a system, annotated with proof terms, in Figure 2. The
judgment defined by this system is I' = D : ¢ (meaning D
is a proof of ¢ in context I'). We will use this system as a
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Fig. 2. Natural Deduction Calculus with Proof Terms

framework in which we can express the axioms of set theory
and express and prove set theory theorems. It is straightfor-
ward to write a proof checker for such a calculus. Indeed it
uses the same ideas as the first implemented proof checker,
AUTOMATH [14], [15], dating back to 1968. A particular
proof checker is included in software supporting the Proofgold
cryptocurrency. Proofgold is an implementation of the idea
for a cryptocurrency supporting formal proofs described in
the Qeditas white paper [34]. In our examples we will create
proofs checkable by the Proofgold proof checker. We will
also compare the performance of the checker distributed with
the Proofgold Core software to a more efficient alternative
implementation due to the third author.

Our primary use case is where S is a collection of set-
theoretic constants (either primitive or defined) and A is a set
of propositions that are either axioms of set theory or follow
from those axioms. The particular set theory we have in mind
is a form of higher-order Tarski-Grothendieck (HOTG). The
primitive constants are those listed in [10], with the exception
that we only take the choice operator ¢, at type ¢, rather than at
every type. Specifically we have ¢, : (¢0)¢, In : wwo, Empty : ¢,
Union : w, Power : t, Repl : ¢(ut)e and UnivOf : w. The
axioms we have in mind are those given in [10], again with
the exception that we only take a choice axiom at type ¢.
The axioms are sufficient to ensure the logic is classical and
extensional. Functional extensionality is built into the proof
system in Figure 2 and we explicitly include an axiom of
propositional extensionality: VPQ : 0.(P < Q) — P = Q.
Via the Diaconescu argument [29], the choice axiom at ¢
implies excluded middle. As a consequence the proof sys-
tem is sound and complete with respect to Henkin-Andrews
semantics.

From now on we will write set-theoretic propositions in the

usual mathematical style, with the understanding that this can
be (and is) fully formalized. For example, we write the set
extensionality axiom as VXY X CY - Y C X - X =Y
which means VXY.Subg X Y — Subq Y X - X =Y
where Subq : w0 is defined as AMA.ABVzInz A —Inz B
and In is primitive.

IV. TRANSLATING SMT TO SET THEORY

In this section we describe a translation from SMT problems
to propositions of set theory. If the SMT problem is refutable,
the set-theoretic proposition will be provable. We begin with
a toy example to give an intuition for how the translation will
work. Consider the following unsatisfiable SMT problem:

(declare—fun p () Bool)
(assert p)
(assert (not p))

We will interpret the SMT sort Bool as the set 2 (i.e., {0,1}).
In the SMT formulation, p is a constant (or equivalently, a
nullary function). We translate p as a universally quantified
variable restricted to 2. When we wish to use p as a proposition
(and not a set) we write 0 € p (since 0 ¢ 0 and 0 € 1).2
The set-theoretic proposition translated from the SMT prob-
lem is
Vpe20ep—-0¢dp— L (D

(Note that 0 ¢ p is notation for =(0 € p) which is notation
for 0 € p — L.) The proof term for this proposition is

Ap:tAdu:p €2 :0€piw:0¢pww 2)

By saying that (2) is a proof term for (1), we mean that (2):(1)
is derivable in the calculus given by Fig. 2.

The Werner-Aczel interpretation of the Calculus of Induc-
tive Constructions (CIC) is described elsewhere [2], [5], [25],
[33]. For our purposes we simply write M, N, A, B, D, ... for
terms of CIC and assume we have a partial function which may
assign a set 7,M to M, given an assignment ¢ for (at least)
the variables in M. We assume that for well-typed terms M
depending on variables 1 : Ay,... 2, 1 Ay, T, M is defined
whenever pz; € T,A; for i € {1,...,n}. We furthermore
assume the values satisfy the expected properties. For example,
if M has type A, then 7T,M € T,A. In particular, if M is
a proposition (has type Prop, where Prop is the universe of
propositions in CIC), then 7,M € 2, where 2 is {0, 1}. Here,
0 is the empty set and 1 is {0}. The value 0 is also assigned
to every proof. That is, if M is a proposition with proof D,
then 7,M is 1 and 7,D is O (for appropriate assignments ().

Intuitively 7 maps from a type theory (CIC) to the language
of mathematics. However, our intention is to use 7 to map
from CIC to the formal set theory in Section III. This provides
both a semantics to CIC and a different (stronger) notion of
proof term. While there is no proof of proof irrelevance in
CIC, there is a proof of its translation via 7 in HOTG.

2We could alternatively translate p as p = 1 or as p # O since we only
care about the behavior for p € 2.



As a starting point for translating SMT to set theory, let
us consider sorts and terms in SMT to be corresponding
terms in CIC. In that case, 7 already provides a method
of translating SMT sorts and terms to sets. If we simply
consider SMT propositions to be terms of type boolean, then
we can also translate SMT propositions to sets (each provably
a member of 2) — a set which is “true” if 0 is a member of
it and “false” otherwise. However, the SMT propositions will
correspond more closely to the set-theoretic propositions if
we use T to define a mapping 7P sending SMT propositions
to set-theoretic propositions. For example, 7.7 (—F) should be
=T2(P), T2(¥Vx : A.P) should be Vz : 1.z € T,(A) —
TE sse(P) and T2(s = t) should be T, (s) = T,(t). If no
other case applies, 72(P) is taken to be 0 € T, (P).

It is an oversimplification to consider SMT sorts to be CIC
types. Some SMT sorts have a special intended meaning. For
example, the SMT sort Int of integers should be interpreted as
the set of integers, i.e., 7, (Int) should be w U {—n | n € w},
where —n is defined appropriately. In the examples in this
paper we will only use the SMT sorts for booleans, integers
and arrays. Hence we assume 7,(Bool) = 2 and 7,(Int) is
the set of integers. The interpretation of arrays is restricted
but not fixed by the specification (see Page 39 of [6]), and we
will handle this in a special way shown in the next section.

Suppose an SMT problem is given by a set of declarations
of sorts o1, ..., oy, typed constants uy : v, ..., Uy : Qp and
assertions P, ..., Ps. Let U be a fixed Grothendieck universe,
i.e., a set provably satisfying the properties of ZF. We can
translate the SMT problem to the set-theoretic proposition

Voy -+ on € UVuy € Ty (1) -+ Vum € Ty, (am)-
TE(P) = - = TP (P) = L

where ; takes each «; to a corresponding variable of type
¢ (a “set”) which we also call a;; and @5 extends ¢; by also
taking each u; to a corresponding variable of type ¢ (a “set”)
which we also call u;. Note that the set-theoretic proposition
corresponding to the SMT problem is provable if the SMT
problem is unsatisfiable. As a consequence, if the negation
of the set-theoretic proposition is provable, then the SMT
problem must be satisfiable. It is, of course, also possible
that neither the set-theoretic proposition nor its negation is
provable.

V. EXAMPLES

We now consider a few examples. In each case we will show
the result of translating the problem to a formal set theory and
note there is either a formal proof of the set-theoretic propo-
sition or a formal proof of its negation. We briefly describe
the proofs in each case. To make definitions and construct
proofs in the formal set theory we will use the Megalodon
system (the successor to the Egal system [10]). Megalodon
can also produce Proofgold proof terms presented in a simple
to parse prefix notation.> While the Proofgold checker can be
used for type checking and proof checking the data, we claim

3The full data is available at http:/grid01.ciirc.cvut.cz/~chad/s.

that it is straightforward to implement an independent proof
checker and we additionally check the proofs with a faster
reimplementation of the checker. We allow ourselves to freely
use previous definitions or previously proven results (if they
have been previously proven in Megalodon and published in
Proofgold documents). That is, we do not need the proof term
to contain a justification back to the axioms of set theory, but
only back to previously proven results. Later we will also call
the proof checkers on a sequence of documents that do contain
proofs for each theorem, starting from the axioms. Doing so is
where the efficiency of the reimplemented checker is evident.

A. Induction on Natural Numbers

As a first simple example we consider induction on the
natural numbers. Here the natural numbers are considered as
a predicate over the sort Int.

In SMT?2 format we can assert induction fails (which should
be unsatisfiable) by giving a predicate p which holds for 0 and
is closed under successor but does not hold for all integers
n > 0. The SMT2 specification is as follows:

(declare—fun p (Int) Bool)

(assert (p 0))
(assert (forall ((?n Int))

(=>(<=07n) (=> (p ?n) (p (+ ?n 1))))))
(assert (not (forall ((?n Int)) (=> (<=0 ?n) (p ?n)))))

To translate this into a set theoretical statement, we must
give a specific set representing integers. For natural numbers
a reasonable option is to take the finite ordinals (the members
of w). As part of a formalization of Conway’s surreal num-
bers [12] we also have a unary minus operation on all surreal
numbers (including ordinals). The details are not important
here, but it is sufficient to note that —0 =0, —n ¢ w if n € w
and — —x = z for all surreal numbers x. We take int to be the
set wU {—n | n € w} and use int as the fixed interpretation
of the sort Int. In the Megalodon preamble file that we use,
this definition appears as follows:

Definition int : set := omega :\/: {- n|n :e omega}.

Note that the infix :e is Megalodon’s notation for €.

We also have defined binary operations + and * on surreal
numbers which behave as expected on int, as well as orderings
< and < on surreal numbers. In general we will not give
details about definitions unless they are relevant. We will only
state some relevant properties we use, but emphasize that all
properties we use have been previously proven in Megalodon
and published into the Proofgold chain. There are no goals left
open. To make the translation more direct on propositions,
we assume TP(s < t)is T(s) < T(t) and TP(s < t) is
T (s) < T(t) when s and ¢ are of type Int.

Instead of writing 0 € 7, (s) we define local notation bp
(“bool to prop”) in Megalodon as follows:

Let bp : set —prop := fun b => 0 :e b.
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We briefly consider the behavior of bp when applied to
booleans (members of the set {0, 1}). The negation of bp 0 is
0 ¢ 0 which is provable, so bp 0 acts as the false proposition.
On the other hand bp 1 is 0 € 1 which is provable, so bp 1
acts as the true proposition. Note 72(P) is bp T,(P) if P is
not one of the special cases mentioned above.

The statement of the set-theoretic translation of the SMT2
problem appears as follows in Megalodon:

Theorem examplelind_unsat: forall p :e 2 :": int, bp (p 0)
—(forall n :e int, 0 <=n —bp (p n) —bp (p (n + 1)))
—~(forall n :e int, 0 <= n —bp (p n))

—False.

The set 2 :": int denotes the set of functions from integers
to booleans: 2. Essentially the statement says the three
(translated) assertions lead to a contradiction.

The proof in Megalodon proceeds as follows: we assume p
is in the set 2" and assume the three properties hold. In the
preamble there is a predicate nat_p that holds for the finite
ordinals. A previously proven induction principle is included:

nat_ind : forall p:set—prop, p O
—(forall n, nat_p n —p n —p (ordsucc n))
—forall n, nat_p n —p n.

It is straightforward to prove the translated statement from this
already known induction principle.

B. Pigeonhole Principle on Arrays

Our second example will be two versions of the Pigeonhole
Principle. We use arrays from integers to integers (with some
constraints) to play the role of functions from finite ordinals
to finite ordinals. In the first version we will state that every
array acting as a function from {0,...,n} to {0,...,n — 1}
is not injective. In SMT?2 format we assert the negation of this
statement as follows:

(assert (not (forall ((?n Int))
(=> (>= 7n 0) (forall ((?f (Array Int Int)))
(=> (forall ((?i Int)) (=> (and (<=0 7i) (<= ?i 7n))
(and (<= 0 (select ?f ?i)) (< (select ?f ?7i) 7n))))
(exists ((?i Int) (?j Int))
(and (<=0 ?i) (< i 7)) (<=7} ™n)
= (select ?f ?i) (select 7 ?j))))))))))

In order to translate this SMT2 problem into a statement of
formal set theory we must interpret arrays. We will translate to
a statement that universally quantifies over appropriate inter-
pretations of arrays. An interpretation of arrays is a function
Array taking two sets X (the set of indices) and Y (the set of
values) and returning a set Array X Y such that Array X Y is
a set of functions from X to Y that is closed under changing
one value.* If f € Array X Y and we want to change the
value of f on x € X to be y € Y, we can represent the
corresponding function as Au € X.if u = x then y else f u.
Here Au € X.t is notation for the set-theoretic encoding of

“Note that this allows the set of arrays to be empty. If all types in SMT3
will be assumed to be nonempty, then this definition should be changed.

the function taking inputs v € X to values ¢ (depending on
u). The formal details are not important, but A\u € X.t means
the HOTG term lam X (Au.t) of type ¢, where we assume
lam has been previously defined. Likewise, the if-then-else
construct corresponds to the use of a defined If of type ovte.
Megalodon supports notation for such set-level A binders and
if-then-else notation. In addition, a set f (of type ¢) can be
directly applied to a set u in Megalodon, where the meaning
is the HOTG term ap f w and ap of type vt is previously
defined. We can summarize the properties of an interpretation
of Array via the following definition in Megalodon:

Definition Array_interp : (set —»set —»set) —prop
:= fun Array => (forall X Y, Array X Y c=Y :": X)
/\ (forall XY, forall f :e Array XY,
forall x :e X, forall y :e Y,
(fun u :e X => if u = x then y else f u) :e Array X Y).

To deal with arrays, we modify the translation so that 7,Array
is a special selected variable Array : tit and produce the set-
theoretic problem

VArray.Array_interp Array — Voi---o, € U.
Vuy € To, (o) -+ - Y, € To, ().
7:52(P1) — 7:52(Pk) — 1.

Translating the Pigeonhole SMT problem to the formal set
theory of Megalodon we have the following theorem:

Theorem PigeonHoleArrays_1_unsat :
forall Array:set —set —set, Array_interp Array —
~(forall n :e int, 0 <= n —forall f :e Array int int,
(forall i ;e int, 0 <=i /\i<=n—0<=fi/\fi<n)
—(exists i j:eint, 0 <=1 /\i<]j
/\Nj<=n/\fi=f]})) —False.

We can prove the set-theoretic version by reducing to
the following previously proven version of the Pigeonhole
principle:

PigeonHole_nat : forall n, nat_p n —forall f:set —set,
(forall i :e ordsucc n, fi :en)
—~(forall i j :e ordsucc n, fi="fj—i=j).

A second version of the Pigeonhole principle states that
every (array acting as an) injective function from {0,...,n —
1} into {0,...,n—1} is surjective. As an SMT2 problem this
can be stated as follows:

(assert (not (forall ((?n Int)) (=> (>= 7n 0)
(forall ((?f (Array Int Int)))
(=> (forall ((?i Int)) (=> (and (<=0 7i) (< ?i ?n))
(and (<= 0 (select ?f ?i)) (< (select ?f ?i) ?n))))
(=> (forall ((?i Int) (?j Int))
(=> (and (<=0 7i) (< ?i ?n) (<=07j) (< ?j ?n)

(= (select ?f ?i) (select ?f ?j))) (= ?i 7))))
(forall ((?j Int)) (=> (and (<=0 7j) (< ?7j 7n))
(exists ((?i Int)) (and (<= 0 7?i) (< ?i ?n)

(= (select ?f 7i) 7j))))))))))))

The corresponding Megalodon theorem looks as follows:



Theorem PigeonHoleArrays_2_unsat :
forall Array:set —»set —set, Array_interp Array —
~(forall n :e int, 0 <= n —forall f :e Array int int,
(forall i :eint, 0 <=1i /\i<n—=0<=fi/\fi<n)
—(forall i j:eint, 0 <=i/\i<n/\0<=]j
ANJ<n/\fi=fjoi=])
—(forall j :eint, 0 <=j /\j<n
—exists i teint, 0 <=1i/\i<n/\fi=}j))
—False.

The Megalodon proof proceeds by reducing to a similar
previously proven version of the Pigeonhole Principle. It
would also be possible to infer the second version from the
first version simply by instantiating with an array with one
element changed.

C. Failure of Schroeder-Bernstein for Arrays

As a third example, we consider the Schroeder-Bernstein
property for arrays. That is, we consider whether or not two
types « and 8 must have a bijection between them if there are
injections from « into 3 and J into «. In this case the negation
of the property is satisfiable and we give an interpretation
of arrays for which the property fails. Usually in logic there
is either a proof on the one hand or a model on the other.
However, in this case we can also give a proof term for a
proof of the negation of the set theoretical property (where the
negation is before the quantifier over possible interpretations
of arrays). Since the negation of the translated proposition is
provable, the translated proposition is not provable (assuming
consistency of HOTG) and so the original SMT problem must
be satisfiable.

For the SMT2 problem we let f and g be of appropriate
array types and assume f and g are injective. (For simplicity
we fix the two types to both be Int instead of declaring two
sorts.) We then assume there does not exist a bijective array.

(declare—fun f () (Array Int Int))
(declare—fun g () (Array Int Int))
(assert (forall ((?m Int) (?n Int))

(=> (= (select f ?m) (select f ?n)) (= ?m ?n))))
(assert (forall ((?m Int) (?n Int))

(=> (= (select g ?m) (select g ?n)) (= ?m ?n))))
(assert (not (exists ((?h (Array Int Int)))
(and (forall ((?m Int) (?n Int))

(=> (= (select ?h ?m) (select ?h ?n)) (= ?m ?n)))
(forall ((?n Int))
(exists ((?m Int)) (= (select ?h ?m) 7n)))))))

The translation of this problem to a set-theoretic proposition
in Megalodon appears as follows:

forall Array:set —set —set, Array_interp Array —
(forall f g :e Array int int,
(forall m n :eint, fm =fn —-m =n)
—(forall m n :eint, gm = gn —m =n)
(forall m n :eint, hm =h n —m =n)

—~(exists h :e Array int int,
/\ (forall n :e int, exists m :e int, h m = n))
—False)).

We can prove the negation of this proposition (where we
emphasize the negation is before the quantifier over Array).
The most important choice for proving this negated proposition

Fig. 3. Arrays f and g are set to the depicted (injective) array. Any finite
number of updates to it will not create a bijection between Int and Int.

is properly instantiating for Array. Fig. 3 gives an informal
intuition for the construction.

We start by defining an injective function from integers to
natural numbers which sends negative integers = to (2(—x))+
1 and nonnegative integers x to 2.

set int_into_nat : set := (fun x :e int =>
if x < 0 then ordsucc (2 * (- x)) else 2 * x).

We can now inductively define the collection of all functions
that are the same as int_into_nat except on finitely many
elements.

set Arraylntint_p : set —prop := fun f =>
forall p:set —prop, p int_into_nat
— (forall f, forall x y :e int, p f —
p (fun u :e int => if u = x then y else f u))
—p f.

Finally we can define Array (the term we will use as the
instantiation for the quantified variable Array) to be the set
of all functions unless both arguments are the set of integers,
in which case the functions must satisfy ArrayIntInt_p.

set Array : set —set —set := fun A B =>
if A=int /\ B =int
then {f :e int :": int | Arraylntint_p f} else B :™: A.

Intuitively it should be clear that this choice satisfies
Array_interp. It is also the case that Array int int contains
no bijection. Formally we prove that every function satisfying
ArrayIntInt_p has a lower bound and then use this to
conclude that such a function cannot be a surjection.

D. Integer Difference Logic

Our final examples will be integer difference logic prob-
lems. Two are from the “job shop” collection from QF_IDL
portion of the SMT library. One is satisfiable and the other is
unsatisfiable. In both cases we can obtain proof terms for the
corresponding set-theoretic proposition.

As described in [13], [23] satisfiability of a set of atoms of
the form 1 —zg < wvg, Lo — 21 < V1, .oy, Lo — Ty < Up1
(where the variables range over integers) can be decided by
forming a certain directed graph with edges labeled by integers
and checking if there is a negative cycle. If there is no negative
cycle, then values for the variables can be computed from the
graph.

We first consider a slightly modified (but equivalent) version
of the problem jobshop2-2-1-1-4-4-11. In the problem
there are five integer variables si, s}, s7, s3 and ref. The
assertion given in the problem is

voVUI)A (vaVug)Ast —st>4As2—s2>4
2 1 2 1
/\s%—refg7/\5%—refS?/\s%—resz/\sf—refEO



where v1, vg, vs and vg are locally defined (via a let) to be
the atoms s —s? > 4, s3—s1 >4, s1—s2 > 4and s3—si > 4,
respectively. This problem is unsatisfiable. An informal proof
of unsatisfiability proceeds by splitting into two cases via the
disjunction vy V vs3. In the vy case there is a negative cycle
given by s3, s}, s1,ref. In the vz case there is a negative cycle
given by s, 52, 57, ref.

The set-theoretic version of the problem can be defined as
the following proposition in Megalodon.

forall s1_1 s1_2s2_1s2_2 ref :eint,
let v_O:prop :=4 <=5s2_1+ -sl_1in
let v_l:iprop :=4 <=sl1_1+ -s2_1in
let v_2:prop := 4 <=s2_2 + —sl_2in
let v_3:prop := 4 <=5s1_2 4 -s2_2in
(-0 \/ v_1) )\ (v2\/ v_9)
/N4 <=sl_2+ -s1_1/\4<=s2_2+ -s2_1
J\sl_2+ -ref <=7 /\s2_2 + -ref <=7
/N0 <=sl1_1+ —ref /\ 0 <=s2_1 + —ref)
—False.

Note that we have slightly modified the inequalities to all
use < for simplicity. Also, we combine the unary — with
the binary 4 operator instead of using a binary — operator.
The proposition above corresponds to the unsatisfiability of
the original SMT problem and it can be proven in set theory
using the negative cycles mentioned above and the following
(formally proven) result.

Theorem idl_negcycle_4 : forall x y z w v1 v2 v3 v4,
SNo x —+SNo y —+SNo z —+SNo w
—SNo vl —+SNo v2 —SNo v3 —SNo v4
V1 +Vv2+Vv34+VvA<0 =2y 4+ x<=vl 2z+ -y <=v2
—w + -z <= v3 —x + -w <= v4 —False.

The theorem 1d1_negcycle_4 is specific to negative cycles
of length 4, but is also more general since variables range
over values satisfying the predicate SNo, a predicate true for
integers, real numbers, and more (Conway’s extension of the
real numbers described in [12]). It is relatively easy to prove
idl_negcycle_4, as it is for smaller cycles. It is also
possible to algorithmically generate a proof of a theorem for
n + l-cycles given one for n-cycles. We have done this for
ne{2,...,22}

The next example we consider is a slightly modified version
of jobshop2-2-1-1-4-4-12 which is a simple modifica-
tion of the previous example by changing each 7 to 8.

(vo V1) A (vaVus)Asy —st >4ns5—s3>4
/\s%—refSS/\s%—refSS/\s%—refEO/\s%—refEO

This makes the problem satisfiable by taking si = 0, s = 4,
s2 =4, s2 =8 and ref = 0.

The corresponding set-theoretic proposition is given as
follows:

forall s1_1 s1_2s2_1s2_2 ref :eint,

let v_O:prop ;=4 <=s2_1+ -sl_1in
let v_1l:prop ;=4 <=sl1_1+ -s2_1in
let v_2:prop := 4 <=5s2_2 + -sl_2in

let v_3:prop :=4 <=5s1_2 + -s2_2in

(0 \/ v_1) /\ (v2\/ v_9)
/\Nd<=sl_2+ -s1_1/\4<=s2_2+ -s2_1
J\s1_2 + -ref <=8 /\ s2_2 + -ref <=8
/N0 <=sl1_1+ -ref /\ 0 <=s2_1 + —ref)
—False.

Since the problem is satisfiable, the proposition cannot be
proven. However, we can prove its negation by assuming the
proposition holds and applying it to the values above. One
must then proven vy and vy hold (giving both the disjunctions)
and prove the remaining inequalities hold.

We finally consider a family of integer difference logic
examples. For m € {3,...,16} let idl,, be the integer
difference logic problem with integer variables g, ..., I,
70y - Tm, n and s. Assume s —n < m+1, [p —s < —1,
ro—s<—-1,n—-1, <-1and n—r, < —1. Additionally
we assume disjunctions ;41 —; < =1V ;4 —1; < —1 and
Tig1 — 7 < =1V —r; < —1fori e {0,...,m—1}. The
proof requires considering 2™ cases, each of which is contra-
dictory since there would be a negative m + 3 cycle. We have
generated the problems and their solutions algorithmically as
Megalodon propositions and proofs.

VI. RESULTS: CHECKING PROOFS

In order to show the practical applicability of the approach,
we show that the proofs generated in the previous section can
be efficiently verified. The generality of proof terms allows
checking them independently. To demonstrate this, as already
mentioned in Section III, we not only provide a lower-level
proof checker, but also show that the proofs can be verified
by the Proofgold checker. In this section we discuss the
standalone checker and present the results of the experiments
from the previous section.

The checker parses the given ASCII proofs into an in-
memory algebraic datatype representation. The representation
corresponds to the proof rules of the calculus (as presented in
Fig. 2). In order to verify that all the proof rules “KNOWN”
are declared and correctly interpreted (are of correct types),
already as part of this process, the checker also loads and
proof-checks all the declared primitives, definitions, and the
proved properties. These can for example correspond to the
basic concepts in the used HOTG set theory (introduced
in Section III), but also further definitions and the proven
consequences of these definitions such as these shown in the
last section.

The checking of the individual proof term rules follows
their definitions (again as given in Fig. 2). Checking most
of those is straightforward, however, they heavily rely on a
simply-typed A-calculus term representation in which checking
[Bn-convertibility needs to be efficient. For this reason, our
standalone checker implements a term representation that
preserves the invariant that terms are (Sn normal. As this
operation may additionally be costly, we furthermore provide
maximum (sub)term sharing and additionally cache the results
of reductions. As the sharing and reductions are the most



TABLE I
TIME TO PARSE AND CHECK ALL PREVIOUSLY PUBLISHED DOCUMENTS

| New Checker | Proofgold Core Checker
ASCII 6s 57.7s
binary 2.5s 44s

costly, we implement a low-level (simply-typed) lambda-
calculus representation in the C programming language, which
exposes only the high-level term construction and inspection
operations. We use this low-level library from an OCaml
checker for the individual proof steps.

We report the time taken to check the proofs in Tables I
and II. In Proofgold proofs are part of documents, so what
we report are the time to check the document. The usual way
documents are checked in Proofgold Core relies on knowing
what has been previously published so that one can use pre-
vious definitions and proven results. In order to do standalone
checking we read and check all 317 documents published
into the HOTG theory of the Proofgold blockchain, hashing
previous results for use when checking the next document.
In Table I we report the time to check these 317 documents
before checking the new document. We give the results for
two formats: one is ASCII format mentioned above (so that
the time includes the time to parse) and another is a binary
format native to OCaml. The new checker is almost 18 times
faster when checking the binary format, showing a significant
improvement over the checking time of the Proofgold Core
checker.

Table II shows the time taken by the two checkers to check
the new document (the one with the relevant proof). On the
examples other than the family of integer difference logic
examples, the new checker is roughly 4.6 times faster. On
the family of examples, as the n gets larger, the new checker
begins to take longer than Proofgold Core. The likely reason
for this is that in the family of examples the steps are mostly
unique and therefore there is almost no possibility for term
sharing, so the new checker introduces overhead for these.

VII. CONCLUSION

A finitely axiomatized set theory using Church’s type theory
instead of first-order logic provides a simple way of obtaining
a candidate semantics for SMT3. Via Curry-Howard, we also
naturally obtain a candidate notion of independently checkable
proof term. We have given examples that show such a notion
of proof is sufficient to handle abstract examples that may
be out of reach for more specific notions of proof. We have
also given a family of integer difference logic examples to
demonstrate that such proof terms can be practically con-
structed and checked. An efficient reimplementation of the
checker distributed with Proofgold Core is able to check all
the examples in this paper, checking all proofs back to the
axioms of set theory within a few seconds.

TABLE II
TIME TO CHECK BINARY VERSIONS THE NEW DOCUMENT

New Checker | Proofgold Core Checker
Induction 0.0015s 0.005s
Pigeonholel 0.0017s 0.0065s
Pigeonhole2 0.0018s 0.0075s
Schroeder-Bernstein 0.0049s 0.0268s
Jobshop11 0.0017s 0.0098s
Jobshop12 0.0015s 0.0042s
IDL3 0.0018s 0.0043s
IDL4 0.0025s 0.0058s
IDLs 0.0035s 0.0079s
IDLg 0.0064s 0.0117s
IDL~ 0.0121s 0.0263s
IDLg 0.0276s 0.0434s
IDLg 0.069s 0.1104s
IDL1¢ 0.209s 0.486s
IDL1¢ 0.721s 0.527s
IDL12 1.738s 0.991s
IDL13 4.088s 2.232s
IDL14 9.603s 5.347s
IDL15 22.763s 10.91s
IDL16 46.177s 24.138s
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