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Motivation

“A significant enabler for the success of SMT has been the
SMT-LIB standard input language, which is supported by
most SMT solvers. So far, no standard proof format has
emerged.

This is, however, no accident. Because of the ever in-
creasing number of logical theories supported by SMT
solvers, the variety of deductive systems used to describe
the various solving algorithms, and the relatively young
age of the SMT field, designing a single set of axioms and
inference rules that would be a good target for all solvers
does not appear to be practically feasible.”
— Stump et al., Formal Methods in System Design 2013
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SMT proofs

Higher order set theory

IHOL trusted kernel
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Proofgold New Checker
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(Trusted) Kernel

• intuitionistic higher logic as the underlying trusted kernel

• each proof gives a proof term

Γ ⊢ Knowns : s
s ∈ A

Γ ⊢ u : s
u : s ∈ Γ

Γ ⊢ D : s
Γ ⊢ D : t

s≈t

Γ,u : s ⊢ D : t
Γ ⊢ (λu : s.D) : s→ t

Γ ⊢ D : s→ t Γ ⊢ E : s
Γ ⊢ (DE) : t

Γ ⊢ D : s x ∈ Vα \ FΓ

Γ ⊢ (λx.D) : ∀x.s
Γ ⊢ D : ∀x.s x ∈ Vα, t ∈ Λα

Γ ⊢ (Dt) : sxt

f,g ∈ Vαβ distinct, x ∈ Vα

Γ ⊢ Extα,β : (∀fg.(∀x.fx = gx) → f = g) 6
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Toy Example

(declare-fun p () Bool)
(assert p)
(assert (not p))

• (declare-fun p () Bool) . . . p ∈ 2

• (assert p) . . . 0 ∈ p
• (assert (not p)) . . . 0 /∈ p
• Prove UNSAT: ∀p ∈ 2. (0 ∈ p→ 0 /∈ p→ ⊥)

• Remarks: → is IHOL built-in, ∈ is axiomatized
• Proof term: λp : ι.λu : p ∈ 2.λv : 0 ∈ p.λw : 0 /∈ p.w v
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Schroeder-Bernstein for Arrays

• Schroeder-Bernstein:
Injections α to β and β to α imply existence of a bijection

• In SMT2, for arrays:

• f injective array Int to Int
• g injective array Int to Int
• there is no array h bijective from Int to Int
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Failure of Schroeder-Bernstein for Arrays

• Let A be injective array:
… -2 -1 0 1 2 …
… 3 1 0 2 4 …

• Define universe U as finite modifications to A.
• Arrays in U have a lower bound, no array in U is bijective.
• Here existence of model

• by proving negation of the original.
• Not always possible — despite complete calculus.

• Are we happy about this result?
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Alternatives: Directly to Calculus of Inductive Constructions

• Map SMT types to CIC types

• Use e.g. Coq as checker
• Example issue: Bool vs. Prop
p = (∀i. i < 0)
(declare-fun p () Bool) (assert (= p (forall ((i Int)) (< i 0))))

• Example issue: Type-checking of parametric bitvectors
Type-checks? bv1[n] ++ bv2[m] = bv2[m] ++ bv1[n]
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Alternatives: Go to Set Theory but Use CIC as Kernel

• Possible

• No clear advantage
• Heavier kernel
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Current Infrastructure

• Megalodon: proof assistant for IHOL

• Proofgold: blockchain with proofs
(distributed mathematics)

• Proofgold checker: part of Proofgold
• New checker: can be used independently
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Conclusion

• Question:
What is a good proof-theoretical framework for (new) SMT?

• Proposal:
Higher order set theory
axiomatized in intuitionistic higher order logic,
obtaining small trusted kernel

• Natural translation of SMT concepts to sets.
• Feasibility on concrete examples and available checkers.
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