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Abstract

The main interest of this thesis is the application of optimization-based
control techniques on a 1/10 scale autonomous racing vehicle for the
F1/10 Autonomous Racing Competition. The goal is to implement a con-
trol algorithm able to achieve fast lap times in time-trial races. Selected
vehicle and tire models are identified and implemented using a genetic
algorithm. A Model Predictive Contouring Control algorithm utilizing
the identified models is integrated into the racing vehicle platform, and
its performance is tested in simulation and real-life experiments. The
control algorithm successfully optimized the vehicle’s trajectory in the
simulation and was able to drive the vehicle safely through the testing
track in the real-life experiment.

Keywords: F1/10 competition, Autonomous racing, Model identifi-
cation, Pacejka magic formula, Model Predictive Contouring Control,
Trajectory optimization

Abstrakt

Tato práce se zabývá aplikaćı optimalizačńıch ř́ıd́ıćıch technik na au-
tonomńım závodńım vozidle v měř́ıtku 1/10 pro soutěž F1/10 Au-
tonomous Racing Competition. Ćılem práce je implementace ř́ıd́ıćıho al-
goritmu schopného dosáhnout rychlých čas̊u na kolo na závodńı dráze. V
práci jsou popsány vhodné matematické modely vozu a pneumatik, a vy-
braný model vozidla a pneumatik je identifikován a implementován. Do
závodńıho vozidla je integrován ř́ıd́ıćı algoritmus Model Predictive Con-
touring Control, který využ́ıvá identifikované modely, a je otestován v
simulaci a v reálných experimentech s autonomńım závodńım vozidlem.
Implementovaný ř́ıd́ıćı algoritmus byl schopen optimalizovat trajektorii
závodńıho vozida v simulaci, v reálných experimentech dokázal s vozi-
dlem projet testovaćı dráhu.

Kĺıčová slova: F1/10 competition, Závody autonomńıch voz̊u, Identi-
fikace parametr̊u modelu, Pacejka magic formula, Model Predictive Con-
touring Control, Optimalizace trajektorie
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INTRODUCTION

1 Introduction

The F1/10 Autonomous Racing Competition is a competition for standardized 1/10
scale autonomous racing cars, in which the vehicles compete against each other in time-trial
and head-to-head races. In order to outperform other race competitors, the autonomous
vehicle needs to perform its best at maximum possible velocities, even on challenging racing
tracks. Furthermore, both the small 1/10 scale of autonomous cars and the competition
rules significantly restrict the capabilities of the computational hardware, making efficiency
a crucial requirement. Because of this, effective control algorithms are required to minimize
the time in which an autonomous racing car is able to safely drive through the racing track.
The problem of how to minimize the time in which the autonomous vehicle can finish a lap
is generally referred to as the Minimum Lap Time (MLT) problem and has been widely
studied throughout the history of automotive racing of all scales, such as the Formula One
race [39], or the Superbike World Championship [42].

The field of small-scale autonomous racing is beneficial to the expanding automotive
industry by serving as a low-cost test bench for the control algorithms, thus reducing the
financial costs associated with autonomous car development. The small vehicle scale also
limits the number and quality of onboard sensors, requiring robust control solutions due
to noise and low information quantities.

In this thesis, at first, the mathematical models of the vehicle, the tires and the
drivetrain are described and an appropriate combination is selected. Then, an optimization-
based control algorithm that utilizes the track knowledge for the online optimization of
the autonomous vehicle’s trajectory is presented. The selected models are identified and
verified, and together with the selected control algorithm are integrated into the vehicle
platform, shown in Fig. 1. The performance of the integrated controller is then analyzed
in a simulation and in real-life experiments.

Figure 1: The F1/10 autonomous racing vehicle.
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2 Related works

In Section 2.1, we explore the works related to the trajectory optimization approach
for the MLT. Then, in Section 2.2, we describe the Model Predictive Control approach
directly, and its specific Contouring problem formulation is discussed in Section 2.3.

2.1 Trajectory optimization

The interest in the minimum lap time problem dates as far back as 1958, where it was
used in order to optimize the gear ratios and car body type for Formula 1 racing tracks,
as described in [39]. Further analysis of the minimum lap-time problem appeared in 1970
and 1978, but the first to compute the optimal control sequence were Metz et al. in [32] by
utilizing a quasi-steady state (QSS) optimization routine.

QSS optimization is used even in modern approaches, as in [10], where it was used
to analyze the roll stiffness distribution of a race car, and [38], where it was used to
optimize the gear-set. This method features low computational requirements, but provides
less accurate results, as it doesn’t concern the transient dynamics of the car between
separate states.

In [12], Cossalter et al. used a two-point boundary value problem approach to solve
the minimum lap-time problem for motorcycles on the Mugello raceway in order to evalu-
ate vehicle handling and maneuverability by defining them using the cost function. They
used a curvilinear coordinate system for the track model, which simplified the definition
of the trajectory constraints representing the inner and outer track boundaries. This rep-
resentation of the track is used commonly even in recent solutions.

Another used approach, while computationally difficult, is to use nonlinear optimiza-
tion. In [37], a direct collocation scheme and a nonlinear programming algorithm were used
to solve the MLT optimal control problem for a Formula One race car, while reducing the
computational time by utilizing, apart from other means, a curvilinear coordinate system
as introduced in [12]. Although utilized mainly for offline planning, in [51] and in [17] a
direct numerical method was used for online trajectory optimization. However, the usage
of nonlinear solvers resulted in limited reaction times.

While not optimization based, reactive algorithms are widely used for racing purposes
because of their low sensor requirements and are mentioned here due to their prevalence.
One of those is the Follow the Gap algorithm, presented in [40]. In each iteration, the
algorithm extracts the visible gaps in front of the vehicle and steers the car towards the
largest one. Since this algorithm doesn’t consider the vehicle dynamics, it is not able to
optimize the trajectory, thus providing sub-optimal results. It is however able to evade
dynamic obstacles, such as debris and even other cars, and doesn’t require prior knowledge
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of the racing track, and, therefore, it is computationally inexpensive.

2.2 Model Predictive Control

A popular solution for trajectory optimization is utilizing the Model Predictive Con-
trol (MPC) techniques, despite their usually short planning horizon. By combining tra-
jectory optimization with reference tracking, the MPC can be used as a one-level control
system for the optimization of both velocity and steering.

The MPC was successfully used for trajectory optimization on miniature racing cars
in [49], where a nonlinear MPC tracking controller was modified to optimize the miniature
car’s trajectory by imposing an infeasible time reference. This manifested in the desired
behavior of faster lap times achieved by deviating from the velocity reference and by cutting
the track corners.

The MPC was also utilized for the longitudinal control of full-scale vehicles in [30],
where it was applied in a scenario with a convoy of vehicles responding to a sudden cut-in
of another vehicle. The MPC was also used for the lateral control of a full-scale vehicle
in an obstacle evasion scenario using only steering in [21] and in [22], with the velocity
reference tracking done by a separate controller. However, by combining both breaking and
steering in an obstacle evasion scenario, the required distance for the evasive maneuver to
be successful is reduced, as stated, for example, in [41] and [23].

An approach for online replanning with longer planning horizon was presented in [46],
in which they approximated the optimal control problem as a convex quadratically con-
strained quadratic program rather than a nonlinear one. They utilized this for trajectory
replanning in emergency obstacle avoidance scenarios and even demonstrated its perfor-
mance in a racing scenario.

2.3 Model Predictive Contouring Control

The Model Predictive Contouring Control problem (MPCC) was introduced in [27].
It is an extension of the MPC framework suited for real time reference tracking and op-
timization in high speed multi-axis contouring systems, such as X-Y tables. Unlike other
path following approaches, as seen in [5], the MPC-based solutions, such as the nonlinear
MPC used in [18], are able to consider actuator constraints. However, due to the nonlinear
nature, finding real-time solutions to the optimization problem is difficult. By utilizing a
linear time-varying formulation in the MPCC, the computational complexity is reduced,
which is beneficial for real-time applications.

The MPCC was utilized in [29] as a one-level online solution to the minimum lap-
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time problem. It was implemented on a 1:43 scale RC race car, formulated in a way that
maximizes the progress along the tracked reference trajectory, represented by the track’s
center line, while respecting the vehicle model and track constraints. They also implemented
an obstacle avoidance and overtaking algorithm using a high level path planner based on
dynamic programming. The MPCC was later also implemented on a full-scale Formula
Student car, as seen in [25].
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3 Mathematical models

For a successful and reliable trajectory optimization and subsequent tracking, it is
necessary to mathematically describe the behavior of the vehicle in such a way that it is
possible to simulate and predict in the intended application scenarios. This mathematical
description, together with its parameters and constraints, forms the vehicle model. The
first necessary component of the model is the mathematical model of the behavior of the
vehicle itself. The relevant models are introduced in Section 3.2.

Furthermore, since the racing car often operates at its dynamical limits, the tire
forces and slip angles must be considered. This is mainly due to the lateral slip, which is
commonly present while steering at higher velocities. In order to accurately model the slip
dynamics, a suitable tire model is required. The available tire models include the classic
Dugoff model [15] and its variations [26] and the widely used Pacejka magic formula [35]
and its variations [7]. Description of those models can be found in Section 3.3.

3.1 Coordinate system

The coordinate system used in this thesis can be seen in Fig. 2. The vehicle and the
racing track itself are described using planar Cartesian coordinates. The position of the
vehicle in the track then consists of two numerical values [X, Y ], each denoting the distance
to the coordinate system origin in the respective axes x, y.

The vehicle’s state variables, e.g., the longitudinal forward velocity vx or the lateral
velocity vy, are expressed with respect to the vehicle’s own planar coordinate system, if
not explicitly mentioned otherwise. The vehicle’s coordinate system can be seen in Fig. 2,
where the xv, yv are the axes of the coordinate system with the origin in [X, Y ]. The
coordinate system is rotated about the global coordinate system’s origin by the vehicle’s
yaw (heading) angle ϕ.

y

x

yv

xv

ϕ

Y

X

Figure 2: The utilized coordinate system.
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3.2 Vehicle model

The simplest vehicle model is the point mass model, which is described in Sec-
tion 3.2.1. In Section 3.2.2, the non-holonomic kinematic single-track model is described,
and Section 3.2.3 describes the dynamic single-track model. The dynamic dual-track model
is described in 3.2.4, and a brief description of the multi-body vehicle model is given in 3.2.5.

A list of parameters with their description is provided in Appendix C.

3.2.1 Point mass model

The point-mass model, as described in [6], represents the vehicle as a point mass with
acceleration bounds. The acceleration can be applied in any direction, resulting in a simple
description of the vehicle kinematics:

Ẋ = vx,

Ẏ = vy,

v̇x = ax,

v̇y = ay,

(1)

where [X, Y ] represent the global position, vx, vy represent the velocity in global coordi-
nates and ax, ay are the input accelerations in the respective axes. The acceleration bounds
can be then represented as:

√
a2x + a2y ≤ amax (2)

where amax is the maximal acceleration of the point mass. Due to its simplicity, the model
can be useful for applications where it is not necessary to model the non-holonomic behavior
of the vehicle.
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y

x

ay

ax

vy

vx
Y

X

Figure 3: The point-mass model with its respective variables. X, Y [m] denote the vehicle’s
position, vx, vy [m s−1] are the velocities in the global (track) coordinates, and ax, ay [m s−2]
are the input accelerations in the global (track) coordinates.

3.2.2 Kinematic single-track model

The kinematic single-track model, as presented in [6], describes the vehicle as two
wheels connected by a central axle. In case of a road vehicle, this means that the front
and rear wheels are grouped together. This simplification is possible for applications where
the roll dynamics of the vehicle are not necessary to consider, e.g., modeling a vehicle in
situations with a zero lateral velocity.

Unlike the point-mass model, the kinematic single-track model describes the non-
holonomic behavior of the standard road vehicle’s minimum turning radius. This is the
reason that the kinematic single-track model is widely used for vehicle motion planning,
since the holonomic behavior of the point-mass model is not accurate enough for some
applications, e.g., motion planning for vehicle parking. However, as it is purely kinematic,
it does not consider the longitudinal and lateral forces of the vehicle, and it requires the
assumption of zero longitudinal and lateral slip. This makes it inaccurate in applications
with non-zero lateral slip, such as steering in high velocities.

The corresponding differential equations describing the model are:
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Ẋ = v cos(ϕ),

Ẏ = v sin(ϕ),

ϕ̇ =
v

lwb
tan δ,

v̇ = along,

(3)

where the newly introduced variables along, δ stand for longitudinal acceleration and the
steering angle, respectively, and are considered as inputs, v is the vehicle’s longitudinal
velocity, ϕ is the vehicle’s yaw, and the lwb is the length of the vehicle’s wheelbase. A
graphical representation of this model with a complete description of its variables can be
seen in Figure 4.

y

x

Y

X

cwb

along

v

δ

ϕ

ω

lwb

Figure 4: The kinematic single-track vehicle model with its respective variables. X, Y [m]
denote the vehicle’s position in global coordinates, along [m s−2] is the input acceleration,
ϕ [rad] is the vehicle’s yaw (heading), ω [rad s−1] is the yaw rate, δ [rad] is the input steering
angle, v [m s−1] is the longitudinal velocity, lwb [m] is the length of the wheelbase and cwb [m]
is the center of the wheelbase.

3.2.3 Dynamic single-track model

The dynamic single-track model incorporates the longitudinal and lateral forces of
the vehicle, as opposed to the kinematic model. By adding the dynamics of the vehicle, the
model works better for higher velocities where the direction of the velocity vector does not
necessarily correspond to the longitudinal vehicle axis due to a non-zero side-slip angle.
Possible descriptions of such a model are introduced in [6] or in [29], where the dynamics
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of a rear wheel driven vehicle are described, using the longitudinal force applied on the
rear axle Fr,x and the steering angle δ as input. The differential equations describing this
vehicle model are:

Ẋ = vx cos(ϕ)− vy sin(ϕ),

Ẏ = vx sin(ϕ) + vy cos(ϕ),

ϕ̇ = ω,

v̇x =
1

m
(Fr,x − Ff,y sin(δ) +mvyω),

v̇y =
1

m
(Fr,y + Ff,y cos(δ)−mvxω),

ω̇ =
1

Iz
(Ff,ylf cos(δ)− Fr,ylr),

(4)

where the newly introduced variables vx, vy are the longitudinal and lateral velocity, re-
spectively, ω is the vehicle’s yaw rate, m is the vehicle’s mass, Iz is the moment of inertia
corresponding to the vertical axis z and lf , lr are the distances of the front and rear axle,
respectively, from the center of gravity. The lateral forces Ff,y, Fr,y must be provided by,
for example, a tire model. A graphical representation of this vehicle model with a complete
description of its variables can be seen in Fig. 5.

3.2.4 Dynamic dual-track model

In contrast to the previous models, the dynamic dual-track model represents all four
wheels instead of merging each axle into a single wheel. This represents the vehicle’s geom-
etry more accurately and allows it to consider that the normal force acting on each wheel
of the front or rear axle is different. This helps us to model the dynamic forces acting on
the car more accurately when dealing with laterally asymmetrical vehicles. It can also be
extended to include roll and pitch dynamics, similarly to the single-track model.

The model is described by the differential equations:

Ẋ = vx cos(ϕ)− vy sin(ϕ),

Ẏ = vx sin(ϕ) + vy cos(ϕ),

v̇x = ax + vyω,

v̇y = ay − vxω,
ϕ̇ = ω,

ω̇ =
Mz

Iz
,

(5)
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y

x

Y

X

cg

Fr,x

vx
vy

δ

ϕ

ωFr,y

Ff,y
lr

lf

Figure 5: The dynamic single-track vehicle model with its respective variables. X, Y [m]
denote the vehicle’s position in the global coordinates, Fr,x [N] is the rear longitudinal force
acting on the vehicle, Fr,y, Ff,y [N] are the lateral rear and front forces acting on the vehicle,
ϕ [rad] is the vehicle’s yaw (heading), ω [rad s−1] is the yaw rate, δ [rad] is the input steering
angle, vx [m s−1] is the longitudinal velocity of the vehicle, vy [m s−1] is the lateral velocity
of the vehicle, cg [m] is the center of gravity and lf , lr [m] are the distances between the
center of gravity and the front and rear wheel, respectively.

where ax, ay, Mz are given as:

ax =
(Ff,l,x + Ff,r,x) cos(δ)− (Ff,l,y + Ff,r,y) sin(δ) + Fr,l,x + Fr,r,x

m
,

ay =
(Ff,l,x + Ff,r,x) sin(δ) + (Ff,l,y + Ff,r,y) cos(δ) + Fr,l,y + Fr,r,y

m
,

Mz = lf ((Ff,l,x + Ff,r,x) sin(δ) + (Ff,l,y + Ff,r,y) cos(δ))− lr(Fr,l,y + Fr,r,y)

− tf
2

((Ff,l,x − Ff,r,x) cos(δ)− (Ff,l,y − Ff,r,y) sin(δ))− tr
2

(Fr,l,x − Fr,r,x),

(6)

where the newly introduced variable Fa,b,c are the forces acting on the vehicle, a ∈ {f, r}
signify the front and rear wheel, b ∈ {l, r} signify the left and right wheel and c ∈ {x, y}
specify whether the force is longitudinal or lateral, respectively, and tf , tr are the lengths
of the front and rear axle tracks. A graphical representation of the dynamic dual-track
model with a complete description of its variables can be seen in Fig. 6.

The dynamic dual-track model is not widely used, since the simplified single-track
model is often deemed sufficient. One example use case can be seen in [11], where the
dynamic dual-track model was used to estimate the vehicle’s states for use in active safety
systems.
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Figure 6: The dynamic dual-track vehicle model with its respective variables. X, Y [m]
denote the vehicle’s position in global coordinates, Fa,b,c [N] are the forces acting on the
vehicle, where a ∈ {f, r} signify the front and rear wheel, b ∈ {l, r} signify the left and
right wheel and c ∈ {x, y} specify whether the force is longitudinal or lateral, respectively.
ϕ [rad] is the vehicle’s yaw (heading), ω [rad s−1] is the yaw rate, δ [rad] is the input steering
angle, vx [m s−1] is the longitudinal velocity of the vehicle, vy [m s−1] is the lateral velocity
of the vehicle, cg [m] is the center of gravity, lf , lr [m] are the distances between the center
of gravity and the front and rear wheel, respectively, and tf , tr [m] are the lengths of the
front and rear axle tracks.
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3.2.5 Multi-body dynamic model

Perhaps the most advanced commonly utilized vehicle model is the multi-body dy-
namic model, described in [6]. It considers the vehicle’s pitch and roll dynamics and their
effects on the vertical load of all 4 wheels, their individual spin, slip and nonlinear tire dy-
namics. In order to model the pitch and the roll dynamics, the multi-body model contains
the description of the vehicle’s suspension dynamics. The suspension dynamics, together
with the tire dynamics, are then used to describe the forces between the sprung masses of
the front and rear axle and the unsprung vehicle’s mass. Since this vehicle model contains
up to 29 state variables, it is not described here (see [6]).

3.3 Tire model

Since the wheeled land vehicle’s behavior depends on the interaction between its
wheels and the road, it is necessary to appropriately model the behavior of tires. The tire
models describe the interaction between the vehicle’s tire and the road. Therefore, their
parameters depend both on the parameters of the tire and on the road the vehicle is driving
on. Accurately describing this behavior necessitates complex mathematical formulations
with many input parameters. This is the reason why many models only approximate the
behavior while remaining fairly simple to identify, striving for the best accuracy possible.

3.3.1 Fiala tire model

The Fiala tire model was introduced in [19]. A variant of this model was utilized
in [50] for the control of high side-slip maneuvers, and is described as:

Fy(α) =

−Cα tan(α) +
C2
α(2−

µs
µp

)

3µpFz
| tan(α)| tan(α)−

C3
α(1−2

µs
mup

)

9µ2pF
2
z

tan3(α) if |α| < αsl,

−µsFzsgn(α) if |α| ≥ αsl,

(7)

where Fy is the lateral force the tire generates, Cα is the tire cornering stiffness, Fz is the
normal load of the tire, µp is the peak friction coefficient between the tire and the road, µs
is the sliding friction coefficient of the tire and α is the tire’s slip angle. The αsl is computed
as:

αsl = arctan(
3µpFz
Cα

). (8)
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3.3.2 Dugoff physical tire model

The Dugoff physical tire model [15] is an analytical model based on the Fiala tire
model, presented in [19] It characterizes the tire with the assumptions of constant vertical
load distribution and using a linear dependence of the friction coefficient on the sliding
velocity of the tire. This simplifies the task of characterizing the tire at the cost of reduced
accuracy, as the tire forces are often non-linear [14]. The physical model of Dugoff was
described in [26] as:

Fx = Cs
κ

1− κ
τ,

Fy = Cα
tan(α)

1− κ
τ,

τ =

{
2− σ if σ < 1,

1 if σ ≥ 1,

(9)

where Cs is the longitudinal tire stiffness, Cα is the cornering tire stiffness, κ is the longi-
tudinal slip of the tire, α is the lateral slip of the tire, and σ is defined by:

σ =
(1− κ)µFz

2
√
C2
sκ

2 + C2
α tan2(α)

, (10)

where µ is the tire’s friction coefficient.

3.3.3 Pacejka magic formula

There are many versions of the (so-called) Pacejka magic formula, as seen in [35]
or [36]. It is a strictly empirical formula describing the combined slip and horizontal force
generation of the tire. A brief description of the Pacejka magic formula, as presented in [36],
is given here, and an example of a tire characteristic curve can be seen in Fig. 7.

The lateral or longitudinal force F produced by the tire is given by the formula:

F = D · sin(C · arctan(B · x− E · (B · x− arctan(B · x)))), (11)

with

Y (X) = y(x) + Sv,

x = X + Sh,
(12)

13/64



MATHEMATICAL MODELS

Figure 7: Typical Pacejka magic formula curve, representing the lateral or longitudinal
force F generated by the tire, with some denoted parameters. The steady-state value ys
can be used to estimate the C and D Pacejka parameters. The parameters Sv and Sh
correspond to the vertical and horizontal shift, respectively [35].

where F corresponds to either the lateral force Fy, or the longitudinal force Fx. The x then
corresponds to the input variable, which is the lateral slip α for Fy, or the longitudinal
slip κ for Fx. The parameters B,C,D,E are called Pacejka parameters. The parameter B
is known as the stiffness factor, C as the shape factor, D as the peak value and E as the
curvature factor. The Sh and Sv are two shift parameters, corresponding to the horizontal
and vertical shift, respectively, introduced in [35].

The magic formula characterizes the force F generated by the tire by a curve that
passes through the origin x = y = 0, reaches a maximum, and subsequently tends to a
stable value. The curve (Fig. 7) shows an anti-symmetric shape with respect to the origin.
Because of the addition of the shift parameters, the curve can have a horizontal or vertical
offset.

3.3.4 Simplified Pacejka

The Simplified Pacejka magic formula was introduced in [7]. It is described by the
equation:

Y = D · sin(C · arctan(B ·X)), (13)

where the parameter D represents the peak function value, C describes the shape of the
curve, B is the stiffness factor, Y is either the lateral force or brake force generated by the
tire and X is either the lateral slip angle α, or the longitudinal slip angle κ. Compared to
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the original Pacejka magic formula, the simplified formula utilizes only three parameters,
but additional formulations utilizing the E curvature factor are presented in [7].

In [29], the simplified Pacejka magic formula was utilized to model the tire dynamics
of a 1/43 scale autonomous vehicle as follows:

Ff,y = Df · sin(Cf · arctan(Bf · αf )), (14a)

Fr,y = Dr · sin(Cr · arctan(Br · αr)), (14b)

αf = − arctan(
ωlf + vy

vx
) + δ, (14c)

αr = arctan(
ωlr − vy
vx

), (14d)

where Bf , Cf , Df are the Pacejka parameters for the front tire of the single-track model,
and Br, Cr, Dr represent the rear tire. The simplified Pacejka magic formula was not used
in [29] to calculate the longitudinal force Fx, as it was modeled as a part of the drivetrain
model.

It is important to note that due to the dependence of the lateral tire forces Ff,y, Fr,y
on the vehicle slip angle α, this tire model can be applied only for non-zero longitudinal
velocity.

3.4 Drivetrain model

In order to compute the tire dynamics, it is necessary to know the forward force Fx
acting on the wheels that the drivetrain produces. In [29], a simple drivetrain model for a
rear-wheel driven 1/43 scale racing car is utilized to calculate the force exhibited on the
rear axle Fr,x as:

Fr,x = (Cm1 − Cm2vx)d− Cr − Cdv2x, (15)

where d is the PWM applied to the DC motor, the Cm1, Cm2 are empirical parameters
representing the characteristics of the motor and the Cr, Cd are coefficients representing
the rolling and drag resistances of the car, respectively.

Since the drag resistance coefficient Cd is difficult to measure without specialized
equipment, such as a wind tunnel, the drivetrain model is generalized as:

Fx = (Cm1 − Cm2vx)d− Cm3 − Cm4v
2
x, (16)
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where Fx is the longitudinal force exhibited on the rear or front axle and the Cm1–4 are
the empirical parameters used to shape the model’s response curve to fit the drivetrain
characteristics. This generalization increases the flexibility of the model and allows us to
introduce possible further parameters to shape the response.

As another approach, we can utilize the fact that the vehicle features a speed con-
troller that accepts the engine revolutions per minute (ERPM) reference d̃ ∈ [0, 1] as an
input, where d̃ = 1 corresponds to maximal ERPM and d̃ = 0 to minimal. Because of this,
the drivetrain can be modeled as a first order system with the equation:

Fx =
(Cmd̃− vx)

τs
, (17)

where d̃ is the ERPM reference input, τs is the time constant of the first order system
response, and Cm is a general motor parameter. The first order drivetrain model can then
be generalized as:

Fx =
(Cm1d̃)

Cm2

− vx
Cm3

. (18)

where Cm1–3 are empirical parameters used to shape the model’s response curve.

Note that for Cm3 = Cm2, the generalized first order drivetrain model, described
by Eq. 18, becomes the original first order model, as described by Eq. 17. However, this
generalization allows greater freedom in shaping the drivetrain model response curve.

The model described by Eq. 16 can also be used with the ERPM reference d̃ as an
input, leading to the equation:

Fx = (Cm1 − Cm2vx)d̃− Cm3 − Cm4v
2
x. (19)

3.5 Tire friction ellipse

The tire friction ellipse forms a simple description of permissible control inputs, serv-
ing as a constraint for the optimization algorithms. The sum of the horizontal and lon-
gitudinal forces generated by a tire is bounded by the normal force Fz acting on the tire
generated by the load. This can be described as a force budget that the controller can
utilize when applying forces Fx and Fy. The tire friction ellipse is described in [9] and is
defined as:
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F 2
y

µ2
yF

2
z

+
F 2
x

µ2
xF

2
z

≤ 1,
(20)

where Fy, Fx are the lateral and longitudinal forces generated by the tire, respectively, and
µy, µx are the lateral and longitudinal sliding friction coefficients. The tire friction ellipse
can be also described using the Pacejka parameter D, forming the friction ellipse for the
rear and front tire forces Fr, Ff :

F 2
r,y

D2
rF

2
r,z

+
F 2
r,x

D2
rF

2
r,z

≤ 1,

F 2
f,y

D2
fF

2
f,z

+
F 2
f,x

D2
fF

2
f,z

≤ 1.
(21)

In [25], a modified version of the tire friction ellipse was utilized, using additional
parameters to modify the ellipse’s shape:

F 2
r,y

(pellipseD2
r)F

2
r,z

+
(plongF

2
r,x)

(pellipseD2
r)F

2
r,z

≤ 1,

F 2
f,y

(pellipseD2
f )F

2
f,z

+
(plongF

2
f,x)

(pellipseD2
f )F

2
f,z

≤ 1,
(22)

where the parameter plong ∈ [0, 1] influences the driving style so that with higher value,
the vehicle is forced to corner less while accelerating, and higher pellipse ∈ [0, 1] allows the
tire forces to reach closer to their limits.

Eq. 22 can then be reformulated to obtain the formulation utilized in [29]:

F 2
r,y + (plongF

2
r,x) ≤ F 2

r,z(pellipseD
2
r),

F 2
f,y + (plongF

2
f,x) ≤ F 2

f,z(pellipseD
2
f ).

(23)

Note that in [29], the parameters Dr, Df already contain the values of Fr,z, Ff,z, thus
they are better representing the simplified Pacejka formula as described in Eq. 13. This
results in the utilized and implemented tire friction ellipse formulation:

F 2
r,y + (plongF

2
r,x) ≤ (pellipseD

2
r),

F 2
f,y + (plongF

2
f,x) ≤ (pellipseD

2
f ).

(24)
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4 Optimization Problem Formulation

Based on the results by Liniger et al., we have selected the MPCC as utilized and
described in [29] as the problem formulation for the MLT problem for its combined planning
and tracking ability and showcased high performance. While the resulting controller is
tracking the center line of the track, by applying low costs on the tracking error, the
reference becomes mostly a measure of progress along the track that is to be maximized [29].
This eliminates the need to convert the track and vehicle model into curvilinear coordinates
with the center lines arc length as the independent variable.

The MPCC is then solved in real-time using local convex quadratic programming
(LCQP) approximations of the non-linear problem (NLP). The LCQP approximation
is solved using the High-Performance Interior-Point Method Solver (HPIPM) presented
in [20], which is a state of the art high-performance framework for quadratic program-
ming (QP) designed to efficiently and reliably solve MPC problems.

The utilized MPCC problem formulation is taken directly from [29], and is presented
here only as a means to a self-contained thesis. In order to formulate the MPCC for use in
autonomous racing, it is first necessary to parametrize the reference trajectory, as described
in Section 4.1. Afterward, to formulate the deviation of the autonomous car from its current
reference point, error measures are introduced in Section 4.2.

Mathematical notation The set of real numbers is denoted as R. Then, a set of n real
column vectors is expressed as Rn. The set of non-negative real numbers is expressed as
R0

+, and the set of strictly positive real numbers as R+.

In case of a set of positive semi-definite matrices of size n, the used notation is Sn+
and a set of positive definite matrices as Sn++.

For a positive definite matrix P ∈ Sn++ and a vector x ∈ Rn, the ||x||2P is defined as

||x||2P , xtPx.

The concatenation of two column vectors a ∈ Rn, b ∈ Rm is denoted as (a, b) ,
[aT , bT ]T ∈ Rn+m.

4.1 Parametrization of Reference Trajectory

The parametrization of the reference trajectory is an offline procedure necessary for
each unique track. The reference path is given as a set of center line points. The center line
points are then interpolated with third order spline polynomials in a piece-wise manner.
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The polynomials are then used to parametrize the reference path by its arc length:

θ ∈ [0, L], (25)

where L is the total length of the center line. Because of this parametrization, any center line
reference point [Xref (θ), Y ref (θ)] can be obtained by evaluating a third order polynomial
for its argument θ. It also provides an accurate interpolation within the known points of
the reference path.

By evaluating the equation:

Φ(θ) , arctan

{
∂Y ref (θ)

∂Xref (θ)

}
, (26)

it is also possible to find the angle of the tangent to the reference path Φ(θ) at the specified
reference point, which is used in error computation described in the following section.

4.2 Error measures

In order to calculate the optimal input sequence using the MPCC problem formu-
lation, the error measures describing the deviation of the autonomous car’s position from
the reference path have to be defined.

Let θP , θP : R2 → [0, L] be a projection operator on the reference trajectory defined
by:

θP (X, Y ) , arg min
θ

(X −Xref (θ))2 + (Y − Y ref (θ))2, (27)

where [X, Y ] marks the position of the vehicle and [Xref , Y ref ] the reference point. Then
we can define the contouring error ec(X, Y, θP ) describing the orthogonal distance of the
vehicle from the reference path as:

ec(X, Y, θP ) , sin(Φ(θP ))(X −Xref (θp))− cos(Φ(θP ))(Y − Y ref (θP )), (28)

where Φ corresponds to the angle of a tangent to the reference path at a specified reference
point, as defined in Eq. 26.

Due to the large computational costs of the projection operator θP , it is not well
suited for online optimization algorithms. Therefore, we introduce an approximation θA of
θP which is linked to θP by the equation:
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el(X, Y, θA) , |θA − θP |, (29)

where el(X, Y, θA) forms the second error measure, lag error. The lag error serves as a mea-
sure of the quality of the approximation θA, which is an independent variable determined
by the controller.

The contouring and lag errors ec(X, Y, θP ), el(X, Y, θA) can be approximated as a
function of the vehicle’s position [X, Y ] and the approximate projection θA, which are
variables controlled by the MPCC controller:

ec ≈ êc(X, Y, θA) , sin(Φ(θA))(X −Xref (θA))− cos(Φ(θA))(Y − Y ref (θA)), (30a)

el ≈ êl(X, Y, θA) , − cos(Φ(θA))(X −Xref (θA))− sin(Φ(θA))(Y − Y ref (θA)). (30b)

This approximation (Eq. 30) has an effect that both the errors are independent on
the projection operator θP . The approximate contouring error êc and the approximate
lag error êl are defined as the orthogonal and tangential component of the error between
Xref (θA), Y ref (θA) and the position X, Y , as shown in Fig. 8.

Figure 8: A visualization of the contouring error ec (left) and the lag error el (right) with
linear approximations êc and êl [29].

4.3 MPCC problem formulation

With the definition of the error measures, it is possible to formulate the MPCC prob-
lem, which is used for the MLT. The goal of the MPCC problem is to maximize the progress
along the reference center line in a finite time horizon while simultaneously minimizing the
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contouring error describing the quality of reference tracking, constrained by the model dy-
namics, track constraints and input constraints. The time horizon of the MPCC is defined
as N time samples. The optimization problem is formulated in the following way:

min
N∑
k=1

{||eck(Xk, Yk, θP )||2qc} − γθP,N , (31a)

s.t. x0 = x, (31b)

xk+1 = f(xk, uk), k = 0, . . . , N − 1, (31c)

Fkxk ≤ fk, k = 0, . . . , N − 1, (31d)

x ≤ xk ≤ x̄, k = 0, . . . , N − 1, (31e)

u ≤ uk ≤ ū, k = 0, . . . , N − 1, (31f)

where [Xk, Yk] is the position of the autonomous vehicle in a time sample k. The position
[Xk, Yk] is determined by the discrete-time model f , obtained by discretization of the uti-
lized model equations (Eq. 35) with piece-wise constant control inputs. The eck(Xk, Yk, θP,k)
corresponds to the contouring error defined by Eq. 28, where θP,k is the associated path
parameter such that [Xref (θP,k), Y

ref (θP,k)] is the orthogonal projection of [Xk, Yk] onto
the reference path. The associated weights, γ, qc ∈ R+ for the progress along the reference
center line and the contouring error, respectively, are then used to induce the trade-off
between maximizing the progress and tight reference tracking. Constraints described by
Eq. 31d are the parallel half space constraints for containing the position in the allowed
corridor formed by the track boundaries, while Eqs. 31e,31f limit the states and inputs to
physically admissible values.

Since the MPCC problem formulation relies on the projection operator θP,k, it forms a
bi-level NLP, because the approximation θP,k forms an NLP itself. The complexity of solving
such a problem is unsuitable for online optimization, so the approximation. Therefore, θA,k
of the projection operator θP,k is used instead, and the approximation quality is controlled
by adding a cost on the lag error êlk to the objective.

In order to allow forming the lag error at each time step in the prediction horizon, it
is necessary to introduce an integrator state with the dynamics:

θA,k+1 = θA,k +
vk
Ts
, (32)

where vk can be interpreted as the projected velocity and θA,k as the state of progress at
time k. This approximation reduces the MPCC problem formulated in Eq. 31 to an optimal
control problem in the form of an NLP that is amenable for a real-time implementation:
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min
N∑
k=1

||êck(Xk, Yk, θA,k)||2qc + ||êlk(Xk, Yk, θA,k)||2ql

− σvkTs + ||∆uk||2Ru + ||∆vk||2Rv − σv0Ts, (33a)

s.t. x0 = x, θ0 = θ, (33b)

xk+1 = f(xk, uk), θA,k+1 = θA,k +
vk
Ts
, k = 0, . . . , N − 1, (33c)

Fkxk ≤ fk, x ≤ xkx̄, 0 ≤ θk ≤ L, k = 1, . . . , N, (33d)

u ≤ uk ≤ ū, 0 ≤ vk ≤ v̄, k = 0, . . . , N − 1, (33e)

where δuk , uk − uk−1 and δvk , vk − vk−1. Due to the utilization of the approximation
θA,k, the objective (Eq. 33a) utilizes the approximate contouring error êck(Xk, Yk, θA,k). The

maximization of the final progress measure θP,N is furthermore replaced by
∑N−1

k=0 vkTs,
which is equivalent if the approximation is accurate. Lower and upper bounds of the vk
and θk are imposed to avoid spurious solutions of the NLP, with v̄ denoting the largest
possible progress per sampling time. The cost on the lag error elk(Xk, Yk, θA,k) links the
state of progress to the dynamics of the car. To ensure an accurate progress approximation
and thus a strong coupling between the cost function and the car model, the weight on
the lag error ql ∈ R+ is chosen high, as suggested in [27]. Furthermore, a cost term on the
rate of change of the inputs is added to the objective in order to penalize fast changing
controls, which helps to obtain smooth control inputs and preventing amplifying unmodeled
dynamics.

4.4 Solving the MPCC problem

In order to solve the non-linear optimal control problem described by Eq. 33 in real-
time, local convex approximations of the non-linear control problem in the form of the
following QP formulations are built at each sampling time. This is done by a linearization
of the non-linear terms:
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min
x,u,θ,v,s

N∑
k=1

[
xk
θA,k

]T
Γk

[
xk
θA,k

]
+ cTk

[
xk
θA,k

]
− γvkTs

+

[
∆uk
∆vk

]T
R

[
∆uk
∆vk

]
+ q||sk||∞ − γv0Ts, (34a)

s.t. x0 = x, (34b)

θA,0 = θ, (34c)

xk+1 = Akxk +Bkuk + gk, k = 0, . . . , N − 1, (34d)

θA,k+1 = θA,k +
vk
Ts
, k = 0, . . . , N − 1, (34e)

Fkxk ≤ fk + sk, k = 1, . . . , N, (34f)

sk ≥ 0, k = 1, . . . , N, (34g)

x ≤ xk ≤ x̄, k = 1, . . . , N, (34h)

0 ≤ θA,k ≤ L, k = 1, . . . , N, (34i)

u ≤ uk ≤ ū, k = 0, . . . , N, (34j)

0 ≤ vk ≤ v̄, k = 0, . . . , N, (34k)

where Γk ∈ S7
+ is formed by the quadratic part of the linearized contouring and lag error

cost function and ck ∈ R7 are from the linear part. In order to keep the linearization
error small, the linear time variant approximation for the dynamics (Eq. 35) is used as
well as for the contouring and lag errors. Each non-linear function is linearized around
the output of the last QP iteration, shifted by one stage. The measurement x = x0 is
used as the first linearization point, and the last input of the previous iteration is kept
constant to generate a new last input. The linearization point for the terminal state xN
is calculated by simulating the non-linear model for one time step. The track constraints
(Eq. 34f) are formulated by two half space constraints tangential to the track per time step.
These constraints are formulated as soft constraints, with slack variables sk ∈ R2 and a
corresponding infinity-norm penalty in the objective weighted by q ∈ R+, which is chosen
quite high to recover the behavior of the hard constrained problem whenever possible.

The local QP is then solved in real-time using local convex QP approximations of
the NLP, which is then solved using the HPIPM solver [20].
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5 F1/10 Platform

The first iteration of the vehicle platform was developed in [48] for the F1/10 Au-
tonomous Racing Competition [34] of standardized 1/10 scale vehicles. In the F1/10 Au-
tonomous Racing Competition, university teams compete against each other in time-trial
and head-to-head races on various racing tracks. The currently utilized version of the ve-
hicle platform was developed in [16].

The organizers of the competition provide detailed build instructions, as seen in [47].
In order to maintain a balanced competition of algorithms, the vehicle’s equipment is
strictly defined and limited. The platform, together with its most relevant software, is
briefly described in Section 5.1, and the Chapter 7 describes how the MPCC algorithm is
integrated with the rest of the vehicle.

5.1 F1/10 compatible autonomous car description

An image of the utilized autonomous platform can be seen in Fig. 10. The autonomous
vehicle platform used for the F1/10 competition is based on the Traxxas Slash 1/10 4WD
chassis and is equipped with the NVIDIA Jetson TX2 embedded computer (Fig. 9).

The NVIDIA Jetson TX2 is a system on module embedded computing device built
around the NVIDIA Pascal GPU architecture. It features two CPU units, the NVIDIA
Denver2 dual-core and the ARM Cortex-A57 quad-core CPUs, both operating at 2GHz
and 2GHz, respectively [33]. On top of that, it contains a 256-core NVIDIA Pascal-type
GPU with 256 NVIDIA CUDA cores, together with 8GB LPDDR4 128-bit memory. The
NVIDIA Jetson TX2 is connected to the Orbitty carrier board, providing USB and Gigabit
Ethernet connectivity and a microSD slot.

The onboard sensors of interest are the Hokuyo UST-10LX Light Detection and
Ranging (LIDAR) sensor and the SparkFun 9DoF Razor IMU, a 9 Degrees of Freedom
Inertial Measurement Unit (IMU). The vehicle uses a Velineon 3500 DC motor, which is
controlled by the Vedder Electronic Speed Controller (VESC), which allows to control the
vehicle using the ERPM.

The vehicle is also equipped with a B3-STX Deluxe 2.4GHz transceiver, which allows
us to take over the direct control of the vehicle with a remote transmitter. For safety reasons,
it is used as an emergency brake, where the vehicle’s autonomy is turned off whenever a
command from the remote transmitter exceeds a dead-zone threshold. The authority over
the vehicle controls is managed by a Teensy microcontroller, which serves as a bridge
between the VESC and the transceiver or the onboard NVIDIA Jetson TX2. During the
autonomous mode, the VESC receives the commands sent by the onboard NVIDIA Jetson
TX2. Any command exceeding the dead-zone threshold from the transmitter then turns off
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Figure 9: A closeup photo of the NVIDIA Jetson TX2 with the Orbitty carrier board.

the vehicle’s autonomy, and the vehicle can be operated only using the remote transmitter
until the autonomous mode is restored using a specific command.

The full list of the vehicle’s hardware can be seen in Table 1.

Chassis Traxxas Slash 1:10 4WD VXL
Onboard computer NVIDIA Jetson TX2
Engine Velineon 3500
Controller VESC
Lidar Hokuyo UST-10LX
IMU SparkFun 9DoF Razor IMU
Transceiver B3-STX Deluxe 2.4GHz
Power management Powerboard, LiPo 3S
Camera Intel RealSense D435
GPIO Orbitty dev board v1

Table 1: List of hardware on the vehicle platform.

The utilized Linux operating system is Ubuntu Linux 16.04 equipped with the Robot
Operating System (ROS) Kinetic Kame [43], a robotics middleware containing the libraries
to interconnect the vehicle’s control and data processing software. The vehicle’s control and
data processing software is formed by the so-called ROS nodes, which are computation
performing processes [44]. The nodes are organized into ROS packages, which are a stan-
dardized format for modular libraries and nodes. Each package is a directory containing
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Figure 10: A photo of the utilized autonomous vehicle platform. A is the NVIDIA JETSON
TX2 with the Orbitty carrier board, B is the LIDAR and C shows the VESC (under the
acrylic glass). The IMU is hidden under the LIDAR.

the package.xml file, also called the package manifest. The package manifest defines the
package’s name, version, author and its dependencies on other packages.

The nodes communicate with each other using topics, which are named buses used for
exchanging messages with anonymous publish-subscribe pattern. The messages are defined
either in their own packages or as a part of a larger package with other messages or nodes.
Each message is a data structure containing typed and named fields and has its own unique
name.

The main packages of interest for optimization-based control are the cartographer slam,
containing the Cartographer SLAM algorithm described in Section 5.1.1, the drive api

package, providing a simple to use interface for low-level vehicle control and the respective
drivers for vehicle’s onboard sensors, which periodically publish collected sensor data in
their respective topics.

5.1.1 Cartographer SLAM

It is necessary to know the track’s layout and the car’s position when considering
planning-based control methods. Since the F1/10 competition prohibits the utilization
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of external sensors, the mapping and localization must be done using only the vehicle’s
onboard sensors. Simultaneous Localization And Mapping (SLAM) algorithms are well
suited for such applications since they often allow to utilize only the onboard sensors, and
they are able to both create and update environmental maps and localize the robot inside
them. The F1/10 platform utilizes the Cartographer SLAM, presented in [24], which is a
SLAM algorithm for 2D and 3D localization and mapping. It utilizes onboard planar, 3D,
and multi-echo LIDARs together with the IMU and optionally GPS readings to provide
planar occupancy-grid based maps and position readings, with a periodical loop-closing
procedure to compensate for map drift due to sensor noise.

The data from the IMU is processed by the Ceres solver, presented in [4], which
helps to mitigate measurement noise, and which is utilized to incorporate the knowledge
about the robot’s movement into map building and vehicle localization. This is necessary
for localization and mapping in monotonous corridors, which are often present on racing
tracks. In such track segments, the measurements from the onboard LIDAR may remain
similar for various locations in the corridor, making it difficult to correctly estimate the
robot’s movement between separate measurements.

Due to the platform limitations by the competition rules, the vehicle is equipped
with one onboard planar LIDAR and one IMU. Because the racing tracks used in the
competition are planar, we can use only 2D maps, which helps to reduce the complexity
of the SLAM task. The utilization of Cartographer SLAM in a racing scenario consists of
2 steps. First, the map is created during several laps, which are either manually driven,
or driven autonomously using a reactive algorithm. The stored map is then loaded with
the algorithm in localization mode, which has reduced computational requirements, and
all map updates are short-term only.

The accuracy of the Cartographer SLAM was evaluated using the VICON external
camera localization system [3]. The VICON localization system was evaluated against
ground truth in [31], where the reported root mean squared error (RMSE) against the
ground truth was RMSE = 0.524 mm for velocities lower than 1 m s−1 and RMSE =
0.329 mm for velocities higher than 3 m s−1. For the position update frequency of 100 Hz,
the mean absolute error (MAE) was MAE = 0.367 mm. This accuracy is sufficient to
regard the VICON reported position with the update frequency 100 Hz as the ground
truth for the evaluation of the Cartographer SLAM.

First, it is necessary to account for the different map coordinate system origins and
rotations of VICON and Cartographer SLAM in a way that would not influence the evalu-
ation process. To do this, the vehicle’s position and yaw were recorded while standing still,
and the map and yaw offsets were found as the difference between the averages of both
source’s respective measurements. This offset was then saved and was used to compen-
sate the translational and rotational offset of the coordinate systems of both localization
systems while processing data from further experiments. Measuring the offset in an inde-
pendent experiment helps to ensure that the absolute localization error of Cartographer
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SLAM at the beginning of each experiment is accounted for.

The accuracy was then evaluated using two experiments. In the first one, the reported
position of the stationary vehicle from both localization systems was gathered. The offset-
compensated measurements of the calibration experiment can be seen in Fig. 11a and the
stationary experiment in Fig. 11. The second experiment consisted of localization data
gathering from a manually driven trajectory. The offset-compensated measurements of the
racing experiment can be seen in Fig. 12.

The non-zero RMSE of the offset-compensated data from the calibration experiment
can be attributed to the rotational compensation of the average yaw difference between
the VICON and Cartographer SLAM coordinate systems. Since the RMSE has a similar
value for both the calibration and stationary experiment data, it can be assumed that the
absolute error of the Cartographer SLAM is negligible and the non-zero RMSE originates
mainly from the transformation from the Cartographer SLAM map to the VICON map.

The RMSE of the manually driven experiment, shown in Fig. 12, is low enough
for the Cartographer SLAM to be usable for racing purposes, but must be taken into
account during track processing, for example, by adjusting the track’s safe corridor by the
localization error.
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(b) The stationary experiment.

Figure 11: The comparison between the ground truth and the Cartographer SLAM reported
position during the calibration and stationary experiment measurements. The position
error of the Cartographer SLAM is RMSE = 2.050[cm] for the calibration data and
RMSE = 2.680[cm] for the stationary experiment.
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Figure 12: The comparison between the ground truth and the Cartographer SLAM re-
ported position in an experiment with manual driving. The marker x denotes the starting
position, the marker o the ending position. The position error of the Cartographer SLAM
is RMSE = 9.220[cm].
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6 F1/10 model identification

The process of vehicle model identification starts with selecting the appropriate math-
ematical models for the task from Chapter 3. The selected model, together with the expla-
nation of the decision process, is described in Section 6.1.

The process of identification itself consists of parameter measurements and data pro-
cessing from dynamic vehicle experiments, which are designed to clearly demonstrate the
vehicle behavior that needs to be mathematically modeled. An example of the first cat-
egory can be the vehicle’s weight, or geometry, which can usually be directly measured.
The second category contains, for example, the behavior of the vehicle during acceleration
or during high side-slip maneuvers. The process of the identification, together with the
experiments, is described in Section 6.2.

6.1 Utilized vehicle model

Due to the limited computational capacity of the vehicle’s onboard computer, the
complexity of the vehicle model is a necessary factor to be considered. However, the vehicle
model must also sufficiently describe the dynamical behavior commonly present in the
intended scenarios to be usable for motion planning.

Based on the results of model performance analysis during lane change and hairpin
turn maneuvers published in [8], using the more advanced dual-track model leads to similar
maneuver execution times, while requiring an order of magnitude higher solution time.

The comparison of the single-track model, the single-track model with pitch and roll
dynamics, and the dual-track model with pitch and roll dynamics can be seen in Table 2.
While the pure single track model did not consider pitch and roll dynamics, it was possible
to utilize it to perform the desired maneuvers.

Furthermore, by comparing the single-track model with pitch and roll dynamics to
the dual-track model, it can be assumed that the pitch and roll dynamics are not the
reason for long execution times. Due to the successful application of all three models and
the solution times, the single-track model without pitch and roll dynamics is selected for
the purposes of this thesis.

To calculate the longitudinal and lateral forces acting on the tires, the simplified
Pacejka tire model (as presented in Section 3.3.4) is used for its simplicity and its empirical
nature, since measuring the tire coefficients, as required in other tire models, may not be
done accurately with the available equipment. By combining the single-track model with
the simplified Pacejka tire model and extending them for four-wheel driven drivetrain, the
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Vehicle Model Single-track Single-track with pitch Dual-track with pitch
Maneuver Time [s] 4.28 4.12 4.30
Solution Time [s] 8.00 16.90 137.80
No. of Iterations [-] 111 110 340

Table 2: Comparison of the dynamic single-track, dynamic single-track with pitch and
roll dynamics and dynamic dual-track with pitch and roll dynamics models during lane
changing and hairpin turn maneuvers, as presented in [8].

resulting utilized model is described by the equation:

Ẋ = vxcos(ϕ)− vy sin(ϕ), (35a)

Ẏ = vxsin(ϕ) + vy cos(ϕ), (35b)

ϕ̇ = ω, (35c)

v̇x =
1

m
(Fr,x + Ff,x cos(δ)− Ff,y sin(δ) +mvyω), (35d)

v̇y =
1

m
(Fr,y + Ff,y sin δ + Ff,x sin(δ)−mvxω), (35e)

ω̇y =
1

Iz
(Ff,ylf cos(δ) + Ff,xlf sin(δ)− Fr,ylr), (35f)

where X, Y represent the vehicle’s position in global coordinates, vx, vy denote the longi-
tudinal and lateral velocities, respectively, ϕ is the vehicle’s yaw (heading) angle, ω is the
vehicle’s yaw rate, lf , lr are the distances of the front and rear axles, respectively, from
the vehicle’s center of gravity, m is the mass of the vehicle, Iz is the moment of inertia in
the z axis and δ is the vehicle’s steering angle, considered as an input. The Fa,b signifies
the forces, where a ∈ {f, r} denotes the front and real forces and b ∈ {x, y} denotes the
longitudinal and lateral force, respectively. The lateral forces Fa,y are obtained using the
tire model:

Ff,y = Df · sin(Cf · arctan(Bf · αf )), (36a)

Fr,y = Dr · sin(Cr · arctan(Br · αr)), (36b)

αf = − arctan

(
ωlf + vy

vx

)
+ δ, (36c)

αr = arctan

(
ωlr − vy
vx

)
, (36d)
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where Bf , Cf , Df are the Pacejka parameters and αf , αr are the front and rear slip angles,
respectively.

The longitudinal forces Fa,x are obtained using the drivetrain model, where two differ-
ent approaches were utilized. The first one describes the longitudinal force Fx = Ff,x = Fr,x
the drivetrain applies as:

Fx = (Cm1 − Cm2vx)d̃− Cm3 − Cm4v
2
x, (37)

where d̃ ∈ [0, 1] is the ERPM reference input and Cm1–4 are the empirical drivetrain
parameters.

The second describes the longitudinal force Fx = Ff,x = Fr,x as:

Fx =
(Cm1d̃)

Cm2

− vx
Cm3

. (38)

where d̃ ∈ [0, 1] is the ERPM reference input and Cm1–3 are the empirical drivetrain param-
eters. A graphical representation of the utilized vehicle model, together with a complete
description of its parameters is shown in Fig. 13.

Since the dynamic single-track vehicle model combined with the Pacejka tire model is
applicable only for non-zero longitudinal velocities, it is assumed that the vehicle is always
in motion. The minimal longitudinal velocity vx is therefore set as vx,min = 0.1 {m s−1}.
Because it is undesirable for the vehicle to stop in a race, this assumption is valid and
should not pose any problems in real-life applications.

6.2 Identification

Due to the unavailability of specialized tools for motor torque and tire parameter
measurement, it is necessary to design identification experiments that rely solely on the
data the utilized vehicle platform provides, as described in Chapter 5. This includes the
ERPM (see 3.4), the position of the car and the accelerometer readings.

At first, the vehicle’s parameters must be obtained using the methods described in
Section 6.2.1. Afterward, the drivetrain model needs to be identified, using the method
described in Section 6.2.2. The drivetrain model is then used to simulate accurate vehicle
velocities from known inputs for the purposes of the tire model identification described in
Section 6.2.3.
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Figure 13: The utilized four-wheel driven single-track vehicle model with its respective
variables. X, Y [m] denote the vehicle’s position in global coordinates, Fr,x, Ff,x [N] are the
rear and front longitudinal forces acting on the vehicle, Fr,y, Ff,y [N] are the lateral rear
and front forces acting on the vehicle, ϕ [rad] is the vehicle’s yaw (heading), ω [rad s−1] is
the yaw rate, δ [rad] is the input steering angle, vx [m s−1] is the longitudinal velocity of
the vehicle, vy [m s−1] is the lateral velocity of the vehicle, cg [m] is the center of gravity
and lf , lr [m] are the distances between the center of gravity and the front and rear wheel,
respectively.

6.2.1 Vehicle parameter identification

In the beginning, we have to measure the parameters of the vehicle itself. These
parameters, also visualized in Fig. 14, are:

• The vehicle’s mass m [kg],

• The moment of inertia of the z axis Iz [kg m2],

• The distance lf [m] from the center of gravity cg to the front axle,

• The distance lr [m] from the center of gravity cg to the rear axle,

• The maximum steering angle δmax [rad].

Length of the shaft The total length of the vehicle’s driveshaft was measured as the
distance between the front and rear wheel nuts, as the driveshaft itself is not accessible
without disassembling the vehicle, and the manufacturer does not provide schematics with
enough information. It was measured to be lwb = 0.33 [m].

33/64



MODEL IDENTIFICATION

rf,r

r r,
r

r f
,l

rr,l
m

δmax

δmax

Iz

mf,l

mf,r

mr,l

mr,r

cg
lr

lf

Figure 14: Visual description of the vehicle parameters required for the identification.

Mass distribution Afterward, the SkyRC Corner Weight System [2] was used to mea-
sure the mass distribution on the front and rear axle and each separate wheel, as seen in
Fig. 15. This measurement provides the total mass of the vehicle m = 3837±0.5 [g] and the
proportions of the mass distribution between the front and rear axle mf , mr, respectively,
from which it is possible to calculate:

lf = lwb

(
1− mf

m

)
= lwb · (1− 0.42) = 0.191 [m],

lr = lwb

(
1− mr

m

)
= lwb · (1− 0.58) = 0.139 [m].

(39)

Moment of inertia The moment of inertia Iz is then calculated as the moment of inertia
of a rigid assembly of point masses, formed by the vehicle’s wheels. The measured distances
from the vehicle’s wheels can be seen in Table 4 together with their respective masses. The
Iz is then calculated by the following equation:

Iz =
N∑
i=1

mir
2
i = 0.152 [kg m2], (40)

where N = 4 is the number of point masses (wheels), mi [kg] is the mass of the point mass i
and ri [m] is its distance from the center of gravity.
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Figure 15: A photograph of the weight distribution measurement using the SkyRC Corner
Weight System [2]. Displayed units are in [g].

Maximum steering angle The maximum steering angle δmax [rad] is calculated from
the measured turning radius of the vehicle during an experiment with constant maximum
steering angle δ and low velocity so that there occurs no lateral slip. This experiment was
conducted for both steering directions, and the measured data can be seen in Fig. 16. The
minimal turning radius Rmin [m] was then calculated as:

Rmin,l =
Ymax,l − Ymin,l

2
= 0.678 [m],

Rmin,r =
Ymax,r − Ymin,r

2
= 0.719 [m],

(41)

where Ymax, Ymin are the maximal and minimal values of the coordinate Y , respectively,
and Ymax,l, Ymin,l correspond to the leftward steering while Ymax,r, Ymin,r to the rightward.
The maximal steering angle δmax,l, δmax,r can then be calculated as:
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δmax,l = arcsin

(
l

Rmax,l

)
= 0.508 [rad],

δmax,r = arcsin

(
l

Rmax,r

)
= 0.477 [rad],

(42)

where l is the length of the wheelbase and δmax,l, δmax,r correspond to the leftward and
rightward maximum steering angle, respectively. The resulting maximal steering angles for
the leftward and rightward steering together with the measured turning radii can be found
in Table 3. Since the leftward maximal steering angle δmax is larger than the rightward, the
mean maximal steering angle is calculated and utilized. The calculated maximal steering
angle roughly corresponds to the one utilized in [13].

Steering direction Left Right Mean
Rmin [m] 0.678 0.719 0.696
δmax [rad] 0.508 0.477 0.492

Table 3: The measured turning radii Rmin and calculated maximal steering angles δmax for
leftward and rightward steering, together with their average.

-1.5 -1 -0.5 0 0.5

X [m]

-1

-0.5

0

0.5

1

Y
 [

m
]

Vehicle position

X -0.557

Y 0.625

X -0.582

Y -0.731

(a) Minimal leftward turning radius.

-1.5 -1 -0.5 0 0.5

X [m]

-1.5

-1

-0.5

0

0.5

Y
 [

m
]

Vehicle position

X -0.513

Y 0.198

X -0.538

Y -1.24

(b) Minimal rightward turning radius.

Figure 16: The measured vehicle’s position during the turning radius measurement with
depicted positions corresponding to the maximal and minimal Y position value.
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Wheel Front, left Front, right Rear, left Rear, right
m [kg] 0.829 0.769 1.114 1.124
r [m] 0.223 0.223 0.180 0.180

Table 4: The masses m on each wheel and its distance r from the center of gravity cg.

m [kg] Iz [kg m2] lf [m] lr [m] δmax [rad]
3.958 0.152 0.191 0.139 0.492

Table 5: Measured parameters of the utilized F1/10 autonomous vehicle platform.

6.2.2 Drivetrain model identification

The identification of the drivetrain model described in Section 3.4 consists of multiple
acceleration and braking maneuvers with varying values of the ERPM reference input d̃
with the steering angle δ = 0. Due to the zero value of δ, it can be assumed that there
occurs no lateral slip. Furthermore, since we are unable to measure the longitudinal slip, it
is also assumed to be nonexistent. The measured ERPM then directly corresponds to the
vehicle’s longitudinal velocity.

The data from the acceleration experiments consists of the ERPM as reported by
VESC, and the vehicle input d̃. This measured data was then processed to form pairs of
values based on the time in which they were obtained. Each of the measurements was ended
using a slight braking input from the RC controller, which turns off the vehicle’s autonomy,
effectively simulating the reference command d̃ = 0. Since turning off the vehicle’s auton-
omy does not change the vehicle’s input command, it was set as zero in post-processing
when the operator’s command arrived.

The drivetrain model is then fitted on the measured data from all acceleration ex-
periments using the ga() function from the Mathworks Global Optimization Toolbox [1].
The ga() function is a genetic algorithm minimizing the cost function:

cost = measured velocity− simulated velocity, (43)

to obtain a model that is accurate for the largest range of inputs possible. The parameters
used for the optimization can be seen in Table 6. It is then verified on an independent
second set of experiments performed under the same conditions.

Due to the limited area of the testing environment where the experiments were con-
ducted, the vehicle could sustain the steady-state velocity only for a limited amount of
time, especially in the case of higher ERPM reference inputs. This causes the genetic al-
gorithm to produce parameters accurate for the steering and braking segment, but with
higher steady-state velocities. Therefore, the measured data were processed by artificially
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lengthening the steady-state segment, effectively increasing the cost of the steady-state
error. An example of the artificial steady-state lengthening can be seen in Fig. 17.

First, the generalized form of the model, as described by Eq. 19, is fitted onto the
experimental data. The results can be seen in Fig. 18. While the acceleration and steady-
state values represent the drivetrain accurately for d̃ = 0.5, as seen in Fig. 18b, the steady-
state value accuracy decreases for larger and smaller inputs, as shown for d̃ = 0.3 in
fig. 18a.

For this reason, the first order model, described in Eq. 18, is utilized and fitted
onto the experimental data. The response of the model with parameters identified by the
genetic algorithm, can be seen in Fig. 19. While the accuracy in the acceleration and
braking segments is lower, its accuracy in the steady state segment does not decrease with
varying ERPM reference inputs d̃. This can be seen when comparing the Figs. 19a and 19b
that display the response to ERPM reference d̃ = 0.4 and d̃ = 0.7, respectively.

Since the steady state error is still significant, the identified parameters were afterward
manually tuned at the cost of acceleration and braking accuracy, resulting in the modified
drivetrain response, as seen in Fig. 20. The steady-state error was reduced at the expense
of the braking segment error. The verification of this model on an independent set of data
can be seen in Fig. 21.

Application Population size Max generations Number of variables

Drivetrain model 250 2000

{
4 if generalized model,

3 if first order model

Tire model 250 2000 5

Table 6: The parameters of the GA function used to obtain parameters of the drivetrain
and tire models.
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Figure 17: Velocity data with artificially lengthened steady state compared to original
measured data.
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(a) ERPM reference response for d̃ = 0.3.
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(b) ERPM reference response for d̃ = 0.5.

Figure 18: The generalized drivetrain model’s (Eq. 19) response compared with the vehi-
cle’s response to a common ERPM reference input. Parameters identified using a genetic
algorithm are Cm1 = 14.959; Cm2 = 0.001; Cm3 = 1.327; Cm4 = 0.559.
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(a) ERPM reference response for d̃ = 0.4.
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(b) ERPM reference response for d̃ = 0.7.

Figure 19: The first order drivetrain model 18 response compared with the vehicle’s re-
sponse to a common ERPM reference input. Parameters identified using a genetic algorithm
are Cm1 = 4.097; Cm2 = 0.237; Cm3 = 0.392.
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Figure 20: The manually tuned first order drivetrain model response compared to the fitted
first order model with parameters from GA and the measured velocity for the ERPM
reference input d̃ = 0.4.
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(a) ERPM reference response for d̃ = 0.25.
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(b) ERPM reference response for d̃ = 0.45.

Figure 21: The manually tuned first order drivetrain model (Eq. 18) response compared to
the vehicle’s response to a common ERPM reference input from an independent, verification
measurement set. Parameters identified using a genetic algorithm and manually tuned are
Cm1 = 4.097; Cm2 = 0.237; Cm3 = 0.392.

6.2.3 Tire model identification

The identification experiments for the tire model were performed as described in [50]
by Voser et al. Since the utilized simplified Pacejka tire model is strictly empirical, the
only performed experiment from [50] is a manually driven high side-slip maneuver.

Because the maneuver was manually performed, there is no possibility to use an
ERPM reference as an input. Thus, the measured ERPM was converted to d̃ ∈ [0, 1] where
0 represents the minimum ERPM, and 1 represents the maximum ERPM.

The steering angle input δ was obtained using the recorded PWM commands from
the transceiver unit. Since the experiment consisted of steering using the maximum steering
angle δmax, the change in the steering PWM command signaled the change from δ = 0 to
δ = 1. After the steering PWM command returned to its original value, the steering angle
δ was set to δ = 0.

The recorded vehicle states of interest then include the longitudinal and lateral veloci-
ties vx, vy, the yaw rate ω and the side-slip angle α as reported by the VehicleStatePublisher
(described in Section 7.2). The data is then modified in post-processing due to the high
noise of the reported vx, vy of a stationary vehicle. The vx, vy are assumed to be zero when
they are lower than 0.1 m s−1, and the parts of the recorded data where the vehicle was
stationary were mostly cut out.

A genetic algorithm with the parameters described in Table 6 was then employed to
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fit the combined response of the vehicle model, identified in Section 6.2.1, the drivetrain
model, identified in Section 6.2.2, and the Pacejka simplified tire model, as described in
Section 3.3.4, using the Pacejka parameters Ba, Ca, D, where a ∈ f, r, f denotes the front
and rear tires, respectively.

A single parameter D was used for both tires. This is because the drivetrain in a four-
wheel driven vehicle applies the same forward force Fx to both the front and rear tires.
Combined with the friction ellipse constraint, described in Section 3.5, the parameter D is
used to limit the force the drivetrain can apply. By using two different parameters Df , Dr,
the drivetrain would be constrained by the smaller of those values, which is undesirable,
as it would limit the drivetrain in a way that does not reflect the vehicle’s behavior.

The combined model response with the identified parameters can be seen in Fig. 22.
The model presents a significant understeering characteristic that is not present in the
measured data, signified by a brief positive value of the side-slip angle at the beginning of
the steering maneuver.

Therefore, another approach was utilized. Instead of fitting the measured side-slip
angle α, as used in [50], the lateral velocity vy was chosen as a reference for the genetic
algorithm, together with the yaw rate ω. The response of the tire model identified using
the lateral velocity can be seen in Fig. 23.

As the methods are very similar in nature, and differ only in a single utilized variable,
to differentiate between them, the method seen in [50] is referred to as the side-slip ap-
proach, whereas the method using the lateral velocity is referred to as the lateral velocity
approach.

Because the parameter fitting using the side-slip angle α incorporates the longitudinal
velocity vx (since the α is obtained using α = arctan2(vy, vx)), the longitudinal velocity
vx simulated by the model with vy fitted parameters is compared to the vx from side-slip
fitted and the measured data in Fig. 24. This is done to ensure that the lateral velocity
identification method does not lower the accuracy of the identification compared to the
one presented in [50].

It can be seen that the lateral velocity approach results in an identified model ex-
hibiting less of the unwanted behavior, as seen in Fig. 24a, while the longitudinal velocity
accuracy remains roughly the same, as seen in Fig. 24b.

The model obtained using the lateral velocity approach is then verified on an inde-
pendent set of data to ensure that its behavior in comparison to the measured data is
consistent. The verification results can be seen in Fig. 25.
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(a) The yaw rate ω of the tire model.
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Figure 22: The response of the combined vehicle model identified using the side-slip angle
α approach compared to the measured data in a high side-slip maneuver experiment. The
identified parameters are Bf = 10.603; Cf = 5.520; Df = Dr = 0.475; Br = 3.014; Cr =
3.413.
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(a) The yaw rate ω of the tire model.
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(b) The lateral velocity vy of the tire model.

Figure 23: The response of the combined vehicle model identified using the lateral velocity
vy approach compared to the measured data in a high side-slip maneuver experiment. The
identified parameters are Bf = 0.711; Cf = 1.414; Df = Dr = 0.892; Br = 2.482; Cr =
1.343.
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Figure 24: The comparison of the tire models identified using the lateral velocity vy and
the side-slip angle α approach.
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Figure 25: The response of the combined model identified using the lateral velocity approach
compared to measured data in an independent high side-slip maneuver experiment.
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7 MPCC integration

In order to use the MPCC as an online trajectory planner and tracker, it needs to
be integrated into the existing F1/10 vehicle platform. This consists of the conversion of
the occupancy grid-based track map into an MPCC-compatible format, which is described
in Section 7.1, processing sensor data and providing them to the algorithm, the process of
which is described in Section 7.2, and connecting the MPCC to the control interface of the
F1/10 autonomous vehicle, as detailed in Section 7.3.

7.1 Map processing

The Cartographer SLAM provides a map in the form of a standardized ROS occu-
pancy grid [45], which consists of an array of cells in row-major order with occupancy
probability info and a structure containing the map’s metadata, such as resolution, map
width and height, and the origin point. The MPCC requires the map to be represented
by a set of points forming the reference track’s center line and corresponding closest inner
and outer track border points, which correspond to the track’s surrounding walls. It is
necessary to first determine the center line of the track, as it is not provided, and then to
extract the locations of the track’s borders. This is done using the flooding algorithm as
described in [13].

After extracting the necessary track information from the SLAM-provided occupancy
grid, the center line points are sorted to correspond to the progression of the car on the
racing track. Each center line point is then paired with the nearest inner and outer border
points and their map coordinates X, Y are then stored each in a separate numerical array.
These arrays are then stored in a JSON file under a corresponding key representing the
set of points they are obtained from.

7.2 Sensor data processing

Since the MPCC algorithm requires data from multiple sources, a data aggregation
and processing node was implemented, called VehicleStatePublisher. It collects the data
from the Cartographer SLAM and VESC packages and periodically publishes them in a
single ROS message, which allows for simple integration of control algorithms into the
F1/10 platform. Furthermore, it is used to estimate information about the vehicle that is
not measured by the vehicle’s onboard sensors but is required for the MPCC algorithm.

A single iteration k of the VehicleStatePublisher node loads the transformation
of the vehicle to the map provided by the Cartographer SLAM from which it extracts
the vehicle’s position Lk = [Xk, Yk]. Afterward, it uses the information about the vehicle’s
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position from the previous iteration Lk−1 to calculate the average longitudinal and lateral
velocities vk = [vx, vy] of the period between iterations. This is done by a double-rotation
scheme in order to compensate for possible steering during the time period, where the
position Lk is rotated about Lk−1 by the difference in the yaw angle ∆ϕ = ϕk − ϕk−1,
generating the steering-compensated Lsk. This is described by the following equation:

Lsk = (Lk − Lk−1) ·R(∆ϕ) + Lk−1, (44)

where R(ϕ) =
[

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

]
is the rotation matrix. Both Lsk, Lk−1 are then rotated

about the map’s origin by the yaw angle ϕk−1:

[
Lck
Lck−1

]
=

[
Lsk
Lk−1

]
·R(ϕk−1), (45)

where Lck is the yaw-compensated position, and the velocities vk are then simply calculated
as:

vk =
(Lck − Lck−1)

Ti
, (46)

where Ti = 0.025s is the period of one iteration of the VehicleStatePublisher loop.

Due to the measurement noise of the Cartographer SLAM localization (Section 5.1.1),
the estimated velocities vk are processed using a low-pass filter. We selected a first order
infinite impulse response low-pass filter for its low computational requirements. The low-
pass filter is described by the equation:

v̂k = v̂k−1 + α(vk − v̂k−1), (47)

where v̂k, vk represent the filtered and unfiltered estimated velocities for the iteration k
and α is the parameter of the low-pass filter. Its performance was evaluated using a com-
parison to the velocity calculated from ERPM as reported by VESC during an acceleration
experiment under the assumption that no longitudinal slip occurred, and can be seen in
Figs. 26a and 26b for different values of the reference ERPM input.

The last vehicle state variable that is estimated is the yaw rate ω, which is obtained
as the rate of change of the measured yaw angle φ during the iteration period.
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Figure 26: The performance of the low-pass filter described in Eq. 47 in an acceleration
experiment with zero longitudinal slip.

7.3 MPCC node

For the purposes of the MPCC algorithm integration, the MPCC implementation re-
leased at [28] under the Apache 2.0 license was used and modified in order to fit this thesis’s
purposes. The MPCC was first modified to be buildable using the catkin make tool by
creating the package manifest package.xml listing the desired package name and package
dependencies and modifying the CMakeLists.txt to link the required ROS packages, as is
the standard for ROS.

The initialization of the algorithm consists of loading the vehicle, track and opti-
mization parameters from the respective JSON configuration files. Afterward, the track is
parametrized, as described in Section 4.1, and the HPIPM solver is initialized and set up
using the specified solver parameters. The node subscribes to the /vehicle state topic,
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and sets up a /drive api/command publisher. Afterward, the x0 vehicle initial state object
is formed from the vehicle’s initial position on the track and the initial nonzero velocity
vx0 = 0.1, required by the utilized vehicle model. All other states are set to 0.

Algorithm 1 MPCC Main Loop

1: x = x0

2: while running do
3: Obtain xm = [X, Y, vx, vy, ϕ, ω] from VehicleState topic
4: Update x with xm

5: u = SolveMPCC(x)
6: x = SimulateModel(u)
7: Publish [x.d, x.δ] to drive api/command topic
8: end while

The main loop of the algorithm is described in Algorithm 1. In each iteration i, the
algorithm loads the latest measured state variables xm, as provided by the vehicle state

subscriber, and replaces the respective vehicle state variables x where applicable. Since
some of the vehicle states in x are virtual and provided by the controller (for example the
virtual velocity vs), they are kept from the previous iteration i − 1. The MPCC problem
is then solved for the vehicle state x, providing the sequence of N optimal inputs u, where
N is the time horizon of the MPCC problem. The inputs u are used to run a simulation of
the vehicle model, solved using the Runge-Kutta 4th order method, providing a sequence
of N states xsim. The state x is then declared as x = xsim[0], where the xsim[0] is the first
of the sequence of N states.

The desired vehicle control input is then parsed as D = x.D, δ = x.delta and
processed in order to create a command msg message defined by drive api values.msg.
The command msg message has four parameters: velocity, forward, steering and right.
The velocity ∈< 0; 1 > denotes the ERPM (3.4) reference, where 1 is maximum and 0
is minimum, and is set to x0.d, The forward is a logical parameter signifying whether the
vehicle should drive forward or backward, and is always set to true for the purposes of
the MPCC control. The pair of parameters steering, right work similarly: steering ∈<
0; 1 > is the steering PWM reference, where 1 corresponds to the maximum value of PWM
for the motor responsible for steering, and 0 to the minimum value. It’s value is set as
steering = | δ

δmax
|. Finally, the parameter right, containing a logical value specifying

whether the vehicle should turn right or left, is set as:

right =

{
true if x0.delta≤0,

false if x0.delta> 0.

This message is then published using the drive api/command publisher. While the
MPCC controller provides the optimal input sequence u, it cannot be used to control the
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vehicle. This is because the controller-computed inputs are in the form of input derivatives,
which the vehicle cannot process. Using the input derivatives in the controller is beneficial,
as it enables to limit the rate of change of the inputs, thus preventing large oscillations in
the d and δ states, that could result in an unwanted vehicle behavior that is not properly
modelled.

The main loop of the algorithm is repeated with the iteration period Ti that is ex-
perimentally determined. The loop also includes two secondary publishers that are used to
send the computed horizon of N states and the reference trajectory to their respective top-
ics, mpcc horizon and mpcc reference trajectory, which can be used for visualization
and debugging purposes.
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8 Experimental Results

First, the computational performance of the MPCC algorithm is analyzed to deter-
mine the sampling period provided to the algorithm. This is done in Section 8.1.

The implemented control algorithm together with the identified model is first tested
in a simulation and its performance is reviewed. The results of the simulation are described
in Section 8.2.

After a successful simulation, the control algorithm is deployed on the vehicle platform
and its performance in a real-life experimental scenario is evaluated. This is described in
Section 8.3.

8.1 Computational performance

The test of the computational performance consists of multiple runs of the algorithm
and the measurement of it’s mean computation time. Each run consists of an autonomous
MPCC-controlled ride of the vehicle for the duration of 2000 algorithm iterations. This is
used to set the sampling ratio for the optimization the algorithm utilizes.

The results are shown in Table 7. Even though the mean iteration time suggests
setting the iteration period to Ti = 0.050 s, it is safer to set it as Ti = 0.065 s, so that in
cases when the single iteration takes as long as the maximal measured iteration duration,
there is still some overhead that would reduce the impact of delayed control computation.
This would be insufficient for measurement 4, but the noticeably higher mean iteration
time suggests that it has been an anomalous measurement.

Measurement Max iteration time [s] Mean iteration time [s]
1 0.068 0.047
2 0.066 0.044
3 0.069 0.042
4 0.086 0.062
5 0.069 0.045

Table 7: Maximal and mean iteration times of the MPCC control algorithm from 2000
iterations.

8.2 Simulation results

The implemented MPCC control algorithm was first tested in a simulation using the
identified vehicle model on the racing track used for the experimental verification. The
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simulated trajectory and the computed control inputs can be seen in Fig. 27.

The optimization behavior of the algorithm is clearly seen in Fig. 27a, where the
simulated vehicle deviates from the reference center line in the benefit of a stabler circular
trajectory, allowing the simulated vehicle to retain it’s velocity.

The computed control inputs, as seen in Fig. 27b, feature a somewhat steady leftward
steering with a varying velocity reference.
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Figure 27: The resulting vehicle trajectory and the computed control inputs from a simu-
lation scenario.

8.3 Real-life experimental results

The implemented MPCC control algorithm was then tested in an experimental sce-
nario on the same racing track with the same parameters. The real-life trajectory and the
computed control inputs can be seen in Fig. 28.

The vehicle’s trajectory, as seen in Fig. 28a, shows that the MPCC algorithm tried to
optimize the trajectory by deviating from the reference center line. However, the trajectory
is not consistent compared to the simulated trajectory. Furthermore, the control inputs,
seen in Fig. 28b, feature repeated segments of maximal leftward steering, followed by a
corrective rightward steering input.

To analyze the reasons for this behavior, the longitudinal velocity vx and the yaw
rate ω from the simulated and real-life experiments are compared in Fig. 29. The simulated
vehicle variables in Fig. 29a show that the peaks of the yaw rate ω were significantly lower
than in the real-life experiment, as shown in Fig. 29b. Furthermore, the longitudinal velocity
vx was more stable in the simulation.

This result suggests that the execution frequency f = 15Hz of the MPCC control
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algorithm was not high enough to mitigate the identified model’s inaccuracies. The com-
puted control inputs then resulted in a response different from the response of the simulated
model, which caused the steering correction and a general oscillatory behavior.
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(a) Vehicle trajectory from the real-life exper-
iment.
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Figure 28: The resulting vehicle trajectory and the computed control inputs from the real-
life experimental scenario.

0 50 100 150 200 250 300 350

Samples [-]

0

0.5

1

1.5

2

2.5

3

3.5

v
x
 [

m
s

-1
],

 y
a

w
 r

a
te

 [
ra

d
 s

-1
]

Yaw rate

v
x

(a) Simulated vehicle variables.

0 50 100 150 200 250 300 350

Samples [-]

-4

-2

0

2

4

6

v
x
 [
m

s
-1

],
 y

a
w

 r
a
te

 [
ra

d
 s

-1
]

Yaw rate

v
x

(b) Measured vehicle variables from the real-
life experiment.

Figure 29: The resulting vehicle trajectory and the computed control inputs from the real-
life experimental scenario.
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9 Conclusion

In this thesis, we have selected a dynamic single-track vehicle model for the 1/10
scale autonomous racing vehicle. The vehicle’s tires were modeled using the Pacejka magic
formula, and the drivetrain using a generalized first-order model. We identified the models
using a set of real-life experiments and a genetic algorithm and verified their performance
on an independent set of real-life experiments.

We selected the optimization-based control algorithm Model Predictive Contouring
Control (MPCC) as the solution of the minimum lap-time problem for the F1/10 Au-
tonomous Racing Competition. Together with the vehicle, drivetrain and tire models, we
have integrated the MPCC in the autonomous racing vehicle platform. We have then eval-
uated the performance of the MPCC controller in a simulation and real-life experiments.

The MPCC managed to optimize the trajectory of a simulated racing vehicle through
a virtual representation of a real-life testing track. In the real-life experiments with the
F1/10 vehicle, the MPCC managed to drive the vehicle safely through the testing track.
However, it displayed problematic behavior attributable to the combination of the low
computational power of the vehicle’s onboard computer and the slower dynamics of the
utilized drivetrain model.

9.1 Future work

9.1.1 Improved drivetrain model

The drivetrain model utilized in this thesis has slower dynamics than the vehicle’s
drivetrain, which causes prediction errors in the control horizon. The future work is to
develop a more accurate drivetrain model, which would improve the control performance
of the MPCC algorithm.

9.1.2 Dynamic obstacle avoidance

The utilized control algorithm requires a full prior knowledge of the racing track.
Since the F1/10 Autonomous Racing Competition occasionally features dynamic obstacles,
it would be beneficial to extend the MPCC algorithm for dynamic obstacle avoidance.
Such feature was already implemented in the MATLAB version of the MPCC algorithm
in [28]. The future work is to implement a ROS-compatible online modification of the track
constraints for obstacle avoidance.
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9.1.3 Sub-map planning

The MPCC control algorithm optimizes the vehicle’s trajectory only in a relatively
short control horizon. The future work is to research and develop the option to supply the
control algorithm with partial track segments, which would allow for optimization-based
control without full prior track knowledge.
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in reference tracking and path following for nonlinear systems. Automatica, 44(3):598–
610, 2008.

[6] Matthias Althoff. Commonroad: Vehicle models. Technische niversität München,
Garching, pages 1–25, 2017.

[7] Egbert Bakker, Lars Nyborg, and Hans B Pacejka. Tyre modelling for use in vehicle
dynamics studies. SAE Transactions, pages 190–204, 1987.

[8] Karl Berntorp, Björn Olofsson, Kristoffer Lundahl, and Lars Nielsen. Models and
methodology for optimal trajectory generation in safety-critical road–vehicle manoeu-
vres. Vehicle System Dynamics, 52(10):1304–1332, 2014.

[9] Raymond Brach and Matthew Brach. The tire-force ellipse (friction ellipse) and tire
characteristics. Technical report, SAE Technical Paper, 2011.

[10] DL Brayshaw and MF Harrison. Use of numerical optimization to determine the effect
of the roll stiffness distribution on race car performance. Proceedings of the Institution
of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219(10):1141–
1151, 2005.

[11] Jianfeng Chen, Congcong Guo, Shulin Hu, Jiantian Sun, Reza Langari, and Chuanye
Tang. Robust estimation of vehicle motion states utilizing an extended set-membership
filter. Applied Sciences, 10(4):1343, 2020.

[12] Vittore Cossalter, Mauro Da Lio, Roberto Lot, and Lucca Fabbri. A general method
for the evaluation of vehicle manoeuvrability with special emphasis on motorcycles.
Vehicle system dynamics, 31(2):113–135, 1999.
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[22] Benjamin Gutjahr, Lutz Gröll, and Moritz Werling. Lateral vehicle trajectory opti-
mization using constrained linear time-varying mpc. IEEE Transactions on Intelligent
Transportation Systems, 18(6):1586–1595, 2016.

[23] Ryuzo Hayashi, Juzo Isogai, Pongsathorn Raksincharoensak, and Masao Nagai. Au-
tonomous collision avoidance system by combined control of steering and braking using
geometrically optimised vehicular trajectory. Vehicle system dynamics, 50(sup1):151–
168, 2012.

[24] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-time loop
closure in 2d lidar slam. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 1271–1278, 2016.

[25] Juraj Kabzan, Miguel de la Iglesia Valls, Victor Reijgwart, Hubertus Franciscus Cor-
nelis Hendrikx, Claas Ehmke, Manish Prajapat, Andreas Bühler, Nikhil Gosala,
Mehak Gupta, Ramya Sivanesan, et al. Amz driverless: The full autonomous rac-
ing system. arXiv preprint arXiv:1905.05150, 2019.

[26] Moad Kissai, Bruno Monsuez, Adriana Tapus, and Didier Martinez. A new linear
tire model with varying parameters. In 2017 2nd IEEE International Conference on
Intelligent Transportation Engineering (ICITE), pages 108–115. IEEE, 2017.

56/64



REFERENCES

[27] Denise Lam, Chris Manzie, and Malcolm Good. Model predictive contouring control.
In 49th IEEE Conference on Decision and Control (CDC), pages 6137–6142. IEEE,
2010.

[28] Alex Liniger. MPCC. https://github.com/alexliniger/MPCC, 2020.

[29] Alexander Liniger, Alexander Domahidi, and Manfred Morari. Optimization-based
autonomous racing of 1: 43 scale rc cars. Optimal Control Applications and Methods,
36(5):628–647, 2015.
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APPENDIX

Appendix A CD Content

In Table 8 are listed names of all root directories on CD.

Directory name Description
thesis the thesis in pdf format
thesis sources latex source codes
rosbags rosbags from experimental measurements
src ros packages and matlab scripts containing implemented

code

Table 8: CD Content
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APPENDIX

Appendix B List of abbreviations

In Table 9 are listed abbreviations used in this thesis.

Abbreviation Meaning
MLT Minimum Lap-Time
QSS Quasi-Steady State
MPC Model Predictive Control
MPCC Model Predictive Contouring Control
ERPM Engine Revolutions Per Minute
LCQP Local Convex Quadratic Programming
NLP Non-linear Programming
HPIPM High-Performance Interior-Point Method
QP Quadratic Programming
LIDAR Light Detection and Ranging
IMU Inertial Measurement Unit
VESC Vedder Electronic Speed Controller
ROS Robot Operating System
SLAM Simultaneous Localization and Mapping
MAE Mean Absolute Error
RMSE Root Mean Squared Error
GA Genetic Algorithm
PWM Pulse Width Modulation
JSON JavaScript Object Notation

Table 9: Lists of abbreviations
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APPENDIX

Appendix C List of parameters

In Table 10 are listed the various vehicle parameters used in this thesis.

Parameter Meaning
X Position in the X axis [m]
Y Position in the Y axis [m]
v Longitudinal velocity [m s−1]
vx Longitudinal velocity, or velocity in the X axis [m s−1]
vy Lateral velocity, or velocity in the Y axis [m s−1]
ax Longitudinal acceleration, or acceleration in the X axis [m s−2]
ay Lateral acceleration, or acceleration in the Y axis [m s−2]
δ Vehicle’s steering angle [rad]
ϕ Vehicle’s yaw (heading) [rad]
ω Vehicle’s yaw rate [rad s−1]
α Vehicle’s side-slip angle [rad]
lwb Length of the vehicle’s wheelbase [m]
lf Distance from the front axle to the vehicle’s center of gravity [m]
lr Distance from the rear axle to the vehicle’s center of gravity [m]
m Vehicle’s mass [kg]
cg Vehicle’s center of gravity [−]
tr Length of the vehicle’s front axle [m]
tf Length of the vehicle’s rear axle [m]
Ff,l,x Longitudinal force acting on front left wheel [N]
Fr,r,y Lateral force acting on rear right wheel [N]
Ff,x Longitudinal force acting on front wheel [N]
Fr,y Lateral force acting on rear wheel [N]
tf Length of the vehicle’s rear axle [m]
tf Length of the vehicle’s rear axle [m]
Iz The moment of inertia of the z axis [kg m2]
mf,l Mass on the front left wheel [kg]
Fr,r Mass on the rear right wheel [kg]

Table 10: List of parameters
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