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Malostranské nám. 25, Praha, Czech Republic

A dissertation submitted for the degree of Doctor of Philosophy

August 5, 2004

∗The work described in this thesis was partially supported by the CALCULEMUS
European research training network (HPRN-CT-2000-00102)

i



ii



Abstract

This thesis is about making large libraries of formalized mathe-
matics available to modern automated theorems provers (ATPs)
[Robinson and Voronkov 2001], experimenting with ATPs and evalu-
ating them on such large libraries, and combining ATPs with machine
learning methods to make them practically useful for theorem proving
in such large libraries.

We argue here that the scientific fields involved in this work, i.e.
the field of computer-checked formalization of mathematics, the field
of automated deduction (deductive reasoning), and the field of ma-
chine learning (inductive reasoning) can profit from this combination
and that such a combination can be significant for the fields of math-
ematics and artificial intelligence in general.

The main step towards such combination taken in this thesis is the
development of the first experimental version of the MPTP [Urban 2004]
system (Mizar Problems for Theorem Proving). MPTP translates the
world’s largest library of formalized mathematics - the Mizar Math-
ematical Library ( MML ) [Rudnicki 1992] - to a format suitable for
modern first-order ATP systems. It also implements a number of
functions over the translated library, which allow generating of a very
large number of ATP problems in different ways. Particularly, a first
version of an efficient signature-filtering method derived from the anal-
ysis of the Mizar verifier is used to remove redundant context formulas
for the main experiments with reproving the Mizar theorems by ATP
systems. These experiments reveal that about one third of all Mizar
theorems can be proved by an ATP system, if we supply the premises
used in the MML proof.

Because of the large number of theorems and definitions in the
MML, the complete signature-filtering based techniques are gener-
ally insufficient, if the premises for a proof of some formula are not
explicitely specified. We suggest and implement a machine learning
solution to the problem of selecting suitable premises from such a
large repository. The SNoW [Carlson et all 1999] multi-target ma-
chine learning system is trained to associate selected features of MML
formulas with the premises which are most likely to be useful in their
proofs. We experimentally evaluate the precision of the trained sys-
tem, and show that in combination with the signature-filtering tech-
niques and the SPASS [Weidenbach 2001] ATP system, it is possible
to prove fully automatically about one seventh of all Mizar theorems.
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Introduction

In the field of artificial intelligence and particularly in its artificial reason-

ing part, two large subfields can be observed today. The first one is the
field of deductive reasoning, represented by automated or interactive theo-
rem proving, proof checking, constraint solving, etc. The other one is the
field of inductive reasoning, represented by machine learning, data mining,
knowledge discovery in databases, etc.

There is a fundamental difference between the paradigms of these two
fields. Deductive reasoning is mainly concerned with inference algorithms
which are correct, and possibly also complete, in the mathematical framework
that they use. This holds e.g. for the DPLL procedure [Davis and Putnam 1960]
used in the propositional SAT solvers, or for the various refinements of the
resolution and paramodulation based methods and tableaux based methods
used in the automated theorem provers for first order logic. Logical cor-
rectness is also the main issue in the interactive theorem provers and proof
checkers. In short, the deductive reasoning is centered around the notion of
a formal symbolic proof given in some logical framework.

The notion of a formal proof is usually missing in the contemporary in-
ductive reasoning methods. Here we are typically trying to induce a plausible
hypothesis from some previous experience, evaluate such hypothesis statisti-
cally against some test data, and use it afterwards e.g. for classification or
decision support. The complete semantics of the domains to which inductive
techniques are applied do not have to be (and usually are not) specified, in
some typical domains like e.g. natural language processing this would be
very hard. On one hand, this means that the current inductive methods are
much more robust than the deductive ones, i.e. one incorrect data item has
only marginal effect on the inductive reasoning process, which is far from true
in deductive reasoning. On the other hand, this causes that the inductive
systems usually lack the capability to ultimately show that their hypotheses
are in some sense correct, or that they are related to each other in some
logical sense, which seems to be an important part of human reasoning.

We therefore believe that for the development of smarter artificial intel-
ligence systems, it is necessary to provide databases (or rather knowledge
bases), which would be large enough for the inductive reasoning methods,
and also enough semantically rich, so that deductive methods could be ap-
plied. The most natural choice for such knowledge bases seem to be libraries
of mathematics, where the very ideas of deduction and completely specified
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semantics originated, and number of deductive tools are available.
Unfortunately, most of the currently available mathematics uses a lot of

natural language1 and its detailed semantics is therefore usually not avail-
able for machine processing. The field of formalization of mathematics tries
to change this state, by introducing formal computer-understandable mathe-
matical languages that are used to formalize parts of mathematics and verify
them by computers. In this way, large libraries of formal mathematics are
being created.

In the effort to be as human-understandable and user-friendly as possible,
such large libraries however usually use much richer mathematical formalism
than that used by the most efficient tools for automated deduction2. Thus
the quest for the cooperation between the inductive and the deductive AI
methods leads to another quest, which is no less interesting and potentially
rewarding. This is the quest for the cooperation between formalization of
mathematics and efficient automated theorem proving3.

At this moment we could go further and identify a number of other in-
teresting goals originating from or related to the two tasks mentioned above.
Some of them are discussed later in this thesis. However the main goal of this
thesis is to provide initial answers to these two problems. Particularly, we
describe and implement the first experimental version of the MPTP system
(Mizar Problems for Theorem Proving), which translates the world’s largest
library of formalized mathematics - the Mizar Mathematical Library ( MML
) - to a format suitable for modern first-order automated theorem provers.
The MPTP translation is then used as a knowledge base for a combined
inductively-deductive system, which uses the previous proof experience ex-
tracted from the knowledge base to guide the automated theorem proving of
arbitrary formulas expressed in the MPTP language.

Despite the fact that the two systems are at their first versions, and their
implementation tries to be as straightforward as possible, their first results

1The term mathematical vernacular is often used for the language of mathematical
books and articles.

2Note that while there are a number of very efficient SAT solvers, constraint solvers or
first-order automated theorem provers using clausal logic, there are practically no good
automated provers working with full first-order formulas today, to say nothing about
automated provers for higher-order logic.

3And also vice versa, we believe that for successful fully automated theorem proving
in large mathematical libraries, the combination with inductive reasoning techniques is
necessary.
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obtained are encouraging. About one third of the proofs of theorems in
the MML can be constructed by an ATP system, if the user provides the
high-level advice in the form of other MML theorems and definitions. About
one seventh of all MML theorems can be proved fully automatically by the
combined inductively-deductive architecture trained on the previous MML
proofs, without any user advice. This is a task which cannot be handled
by any current purely deductive or purely inductive system, and the result
suggests that new tasks like searching for new proofs of available theorems,
or discovery of advanced new theorems can be realistically tried with such
combined systems.

We hope that the work and the results presented in this thesis will provide
an important feedback to the scientists working on automated deduction sys-
tems, formalization of mathematics or inductive systems. The first message
is that their systems are already strong enough and that the libraries are
large enough for the both kinds of cooperation to be realistically attempted.
The second message is that it really makes sense (and will be appreciated by
the end-users of the combined systems), if more attention is paid to those
features of their systems which facilitate such cooperation. We also hope
that the results presented here will stimulate other artificial intelligence re-
searchers to contribute new and better combined architectures to this exciting
scientific field, and possibly try to push its borders beyond the scope of pure
mathematics.
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Structure of this thesis

This thesis consists of two articles written by Josef Urban. The first one,
“MPTP - Motivation, Implementation, First Experiments” [Urban 2004] has
been accepted to the 2004 special issue of the Journal of Automated Rea-
soning on first-order theorem proving. It contains the description of the first
version of the MPTP system (section 2), first results of the experiments with
reproving the Mizar theorems by the SPASS ATP system (section 4.1), the
implementation of the Mizar Proof Advisor based on the SNoW learning sys-
tem (section 4.2), the measurements of the standard machine-learning perfor-
mance of this system, and first results of the combined inductively-deductive
architecture consisting of the Mizar Proof Advisor, MPTP signature filtering
and the SPASS prover.

The second article, “Translating Mizar for First Order Theorem Provers”,
is the original longer version of the paper [Urban 2003] published in 2003 in
the Proceedings of MKM 2003, Lecture Notes in Computer Science, Vol.
2594. This article describes in detail the translation of the Mizar language
to untyped first-order format suitable for current automated theorem provers.
It also contains as an appendix the complete grammar of the Mizar language,
which can be used as a reference during reading the examples of the Mizar
texts in this thesis.

We hope that the selected order of articles will make reading this thesis
more easy, than if we started with a formal description of the Mizar language,
that went on with the details of the translation, and only after that described
the achieved results. Though the work described here really had to start with
the translation of Mizar to the formats suitable for first-order ATP systems,
and it has also taken most of the time spent on this work, the first (JAR)
article should provide enough high-level information for many people who are
not interested in the detailed description of Mizar. The second article and
the Mizar syntax can than be used as a detailed reference for the first article.
For readers who prefer the bottom-up approach, it might be helpful to read
first some of the introductions to Mizar mentioned in the second article and
then continue with the second and the first article.

The appendices added at the end of this thesis try to complete the articles
with more detailed examples and information. We show the SQL structure of
the MPTP result database and the manual page of the MPTP top-level prob-
lem generating script, describing many of its functionalities. On a selected
Mizar problem we give an example of the transformation that we perform,
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showing the original Mizar proof, the generated reproval task with complete
background information and the reproval task after the signature filtering,
the hints given by the Mizar Proof Advisor for proving the problem, and the
corresponding theorem proving problem. The SPASS proofs are shown for
all these inputs. Note that the complete MPTP system as well as the Mizar
distribution on which it is based is included on the CD, which is included
in this thesis. It also includes the complete result files of the experiments
described here and the technical descriptions and scripts telling how exactly
the experiments were conducted. We hope that this will enable the readers
to look up the results or re-run the experiments in which they are particu-
larly interested. All the software included in the MPTP system, except the
Mizar-based binary program fo tool, is covered by the GNU Public License.
The translated MML and the fo tool program should be distributed under
the same terms as the Mizar distribution.
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MPTP - Motivation, Implementation, First Experiments

Josef Urban
Dept. of Theoretical Computer Science
Charles University
Malostranske nam. 25, Praha, Czech Republic
(urban@kti.ms.mff.cuni.cz)

Abstract. We describe a number of new possibilities for current theorem provers,
that arise with the existence of large integral bodies of formalized mathematics. Then
we proceed to describe the implementation of the MPTP system, which makes the
largest existing corpus of formalized mathematics available to theorem provers.

MPTP (Mizar Problems for Theorem Proving) is a system for translating the
Mizar Mathematical Library (MML) into untyped first order format suitable for
automated theorem provers, and for generating theorem proving problems corre-
sponding to MML. The first version generates about 30000 problems from complete
proofs of Mizar theorems, and about 630000 problems from the simple (one-step)
justifications done by the Mizar checker. We describe the design and structure of
the system, the main problems encountered in this kind of system, their solutions,
current limitations, and planned future extensions.

We present results of first experiments with reproving the MPTP problems with
theorem provers. We also describe first implementation of the Mizar Proof Advisor
(MPA) used for selecting suitable axioms from the large library for an arbitrary
problem, and again, present first results of this combined MPA/ATP architecture
on MPTP.

Keywords: MPTP, Mizar, ATP, MPA

1. Motivation

1.1. Theorem Provers, Assistants, and Mathematical

Libraries

The situation in the fields of theorem provers, proof assistants and
formalization projects is at the moment roughly following:

There are Otter-style automated theorem provers (ATPs) actively
being developed, usually working in untyped first order predicate cal-
culus and usable in automatic mode for all kinds of problems that are
“simple enough”. These provers are being constantly improved, both
by devising new theoretical approaches (e.g. the superposition calculus
recently, various decision procedures for various fragments of the logic,
etc.), and by more “practical” implementation techniques, like special
purpose indexing techniques. Obviously, an important factor in the
growing usability of ATP systems is also Moore’s Law. The proof of
the Robbins conjecture found by EQP (McCune 1997) can be used as

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.
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2 Josef Urban

an evidence that current ATP systems are already capable of solving
much more than just simple toy problems.

Proof assistants (Wiedijk 2003) are used to help the creation of
computer-checked proofs, and usually include wider functionality, rang-
ing from proof presentation solutions, library browsing and searching
tools, to the actual proof checkers or tactical provers. The underlying
logic used in such systems is usually more complicated than just simple
untyped predicate calculus, and often uses type systems to provide
early error checking and some notion of type “obviousness” (people do
not want to prove all the time that natural number is also real num-
ber). The tactical provers used there usually implement smaller proof
steps, that can often be used as building blocks of more complex user-
programmed tactics. Sometimes even full-strength automated theorem
proving tactics are thus available, but they are usually very simple and
inefficient in comparison with ATP systems, and sometimes sacrifice
the more complicated aspects of the logic (e.g. the type system) to get
a simpler implementation.

Some proof assistants are mainly used and designed for the task of
the formalization of pure mathematics, building large libraries (similar
in certain aspects to large software libraries) of theorems and defini-
tions, reusable in more and more advanced theories. The largest of
such libraries is the Mizar Mathematical Library (MML) built with
the Mizar system (Rudnicki 1992). It is also the most “purely mathe-
matical” library when assessing the contents, and unlike some other li-
braries, its foundations (Tarski-Grothendieck set theory) are very close
to ZFC, used as a foundation for most of the current mainstream
mathematics.

The main objective of such formalization efforts is usually the for-
malization itself (e.g. providing computer-checked proof of the funda-
mental theorem of algebra, Birkhoff’s variety theorem or Jordan curve
theorem), but this also serves the long-term dream of formalizers, that
with “battle-tested”, fine-tuned and user-friendly systems, and big li-
braries, the advantages of computer mathematics (proof checking and
assistance, reliable semantic searching, etc.) will eventually prevail over
the current mainstream brain-to-TEXway of authoring mathematics.

1.2. Using ATP Systems on Mathematical Libraries

So far, there has been very little cross-fertilization between ATP sys-
tems and large formalization projects. The reasons of this state are not
clear to the author. One can be the fact that really large formalized
libraries have only appeared in about last ten years, or may be that
the two scientific groups do not much pay attention to each other,
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MPTP - Motivation, Implementation, First Experiments 3

ATP people being the “strong AI” to whom the formalization task may
seem easy and theoretically uninteresting, while formalization people
confronted with the complexity of this “easy” task may regard ATP
as rather theoretical and toy systems, used for toy problems, and not
“real” mathematics.

There have been attempts to use ATP systems with software li-
braries (Schumann 2001), but still the improvements to ATP systems
are usually of a very general and universally applicable nature (e.g. or-
dered resolution improves the general resolution in a very general way).
Such improvements are very good, however there might be other, more
specific methods, how to improve ATP systems in various mathematical
domains. Recently, some ATP systems started to explore these possi-
bilities, the most advanced example is probably the E prover (Schulz
2002; Schulz 2001), which uses machine learning methods on several
levels, to optimize its behavior on various classes of problems.

However, at this point the problem of datasets usable for training of
such systems appears. The standard TPTP (Sutcliffe and Suttner 1998)
library is good for measuring the improvement in the general methods
used by ATP systems, and it can probably even be used to learn
problem classifications, in notions like number of input clauses, their
average weight, number of symbols, etc., to conjecture best proving
strategies on such problem classes. But it probably does not make too
much sense to try learning of domain specific optimizations on TPTP,
e.g. considering whether the problem symbols are typical set-theoretical
symbols or typical algebraic symbols. This can be the reason, why the
current learning methods usually abstract from the symbol level, paying
attention to the abstracted term structure at best.

The situation is very different with large structured formalized en-
sembles like MML, where the symbols and relations among them are
very stable and organized, and play decisive role for consistency and
usability. So machine learning techniques going to the level of symbols
(e.g. learning the best symbol and term orderings in various domains)
make much more sense here, while methods using more abstract rep-
resentations of terms or clauses obviously can be tried too, with the
additional possibility of using them to find new similarities between
different theories.

Another opportunity coming with large structured libraries, is ex-
actly their structure. In MML, very advanced theories are really de-
veloped from the ground (i.e. Tarski-Grothendieck axioms). There are
no other axioms allowed in MML, all constructions are really carried
out. This means e.g. that consistent construction of integers, rational
and real numbers is done before any calculus takes place, then going
into more advanced fields like Lebesgue measure theory in a book-style
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4 Josef Urban

presentation of the definitions and theorems. There are currently almost
800 articles in MML, building on each other. There are many inter-
twining lines of development, one of the most cited being the project
of formalization of the book “Compendium of Continuous Lattices”
(Bancerek 2000), where about 60 percent of the book has already been
formalized.

This structure can be used for another kind of optimization of ATP
systems. We have the possibility to follow the proofs of theorems, ex-
panding the lemmas and references used in them to arbitrary level with
their own proofs, thus creating hierarchy of increasingly difficult prob-
lems, where lemma conjecturing (perhaps mostly expressed as splitting
in current provers) is the key to success. The lemmas introduced in
MML proofs can then be used as a vast repository of examples usable
for improving this capability of theorem provers by machine learn-
ing methods, maybe even suggesting some new domain-independent
approaches.

Similar opportunity comes with the rich structure of MML defini-
tions. There are nearly 8000 definitions introduced in MML. Humans
introduce definitions to simplify the problem they are solving, effec-
tively hiding some part of it in the definition. This is a method that
probably has not even been used so far in ATP systems1 which are just
at the point of exploring the rules for unfolding the definitions that are
already present. Adding such methods to ATP systems would just itself
be a very significant step in their development, taking them from purely
deductive tools to a more combined inductive/deductive architecture,
closing the gap between them and more inductive systems like e.g. AM
(Lenat 1979; Lenat 1982), and providing a new approximation to the
ideal of a“universal AI system”.

A big challenge is the type system used in the libraries. There are fast
type-inferencing and type-checking mechanisms implemented in proof
checkers. It is a nontrivial problem, to include similar mechanisms as
parts of complete strategies used in ATP systems, however, as some
first experiments show, it may be rewarding.

More generally, most proof assistants (even the non-programmable
ones, like Mizar) have some level of automation. Apart from the type-
inferencing, this may e.g. include some efficient decision or evaluation
procedures, e.g. simple arithmetical evaluation in Mizar. It is also a big
challenge to try to deal with such problems efficiently, within the frame
of the complete methods used by theorem provers.

1 Actually, some advanced skolemization techniques used in FLOTTER (Nonnen-
gart and Weidenbach 2001) already introduce new definitions to simplify problem
representations.
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MPTP - Motivation, Implementation, First Experiments 5

However, the probably most pressing new task and field of research,
which can only appear when a rich and consistent set of notions has
been developed, and many facts proved about them, is the problem of
choosing premises. This happens when a user of the library comes and
asks the simple question “Is assertion X valid?”. It would probably be
very difficult for current provers to use e.g. all theorems from the library
for indiscriminate proof search for X or its negation, since it is in the
nature of resolution proving, that redundant premises make the task
harder. So the problem is to find the smallest relevant set of premises
available in the library, while keeping the chance of success (i.e. com-
pleteness) sufficiently high. Again, statistical and machine learning
methods using previous experience from the library are likely to be
used for such tasks, however also adding more structure to provers’
clause databases could complement this, e.g. with strategies like “add
the next most promising external premise, when the prover runs for
too long”.

Finally, let us finish this enumeration of some new possibilities with
a note on ATP-based theorem discovery over such libraries. Current
refutational provers work by saturating the given theory, with the hope
of finding contradiction, caused by the negated conjecture added to the
premises. During the search process, subsumption is usually used to
keep only the strongest versions of clauses generated by the saturation.
However, the prover can also be used to saturate some initial theory
to certain level, i.e. without any explicit negated conjecture. Inspecting
the kept (i.e. unsubsumed) clauses after some time of such saturation
run, checking them for subsumption with the whole library (e.g. with
systems like MoMM (MoMMUrl; Urban 2004)), and possibly filtering
them with some other criteria (e.g. weight), might be used for adding
new useful clauses to the library. It would be very interesting to see
how good (e.g. in comparison with the human-designed library) are
the facts derived in this way, and again, to try some optimizations,
e.g. with respect to the initial set of theorems, prover settings, etc., or
even try to combine this with the possibility of introducing definitions,
mentioned above, again attempting more general “theory exploring”
AI systems.

So much for the ideas and arguments for closer cooperation between
ATP systems and large formalization projects. In the next part of the
article we describe the first version of the MPTP system, which is
designed exactly with the aim to enable such cooperation between ATP
systems and MML.
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6 Josef Urban

2. Mizar Problems for Theorem Proving

MPTP is available online at
http://alioth.uwb.edu.pl/twiki/bin/view/Mizar/MpTP.
The main packed distribution has about 70 MB and unpacks to about
100MB. It is possible to download only the basic distribution (about
300 kB) without libraries, and build the main (possibly customized)
libraries from the Mizar system.

2.1. Overview of MPTP

MPTP 0.1 at the time of writing this description consists of the follow-
ing parts:

− the main Mizar-to-ATP translation tool (fo tool)

− Makefiles and some very simple scripts creating the translated
library from fo tool’s output

− the translated library, accessible both as Prolog files and as Berke-
ley DB files

− Perl scripts accessing the library as Berkeley DB files, generating
proof problems and providing other important functionality, like
signature filtering or results parsing

− the generated proof problems

Additionally, an SQL (MySQL) database of results with Web inter-
face is used for collecting and analysis of prover results. This is not
included in the system distribution.

2.2. Mizar-to-ATP translation tool

The main Mizar-to-ATP translation tool (fo tool) is a standalone pro-
gram, based on the Mizar implementation (written in objective Pascal).
Since the Pascal sources of the Mizar system are only available to
members of the Association of the Mizar Users, we only distribute
a Linux binary, executable on x86 architectures. This limitation is
only important for those who want to build the translated library for
themselves from the Mizar distribution. MPTP is distributed with the
library already built, so fo tool is not necessary for its normal use.

The tool is similar to the Mizar “exporter” program, which is used
to put the exportable parts of Mizar articles (theorems, definitions,
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MPTP - Motivation, Implementation, First Experiments 7

etc.) into the internal Mizar database2. fo tool takes a Mizar article as
input, and produces several files containing the translated information
about various Mizar constructors, theorems, definitions and clusters
exported from the article. This functionality corresponds closely to the
Mizar exporter.

Additionally, fo tool also collects information about complete proofs
of exported Mizar theorems, which covers some statistics about the
proof (its length expressed as the length of the list of all references3

(including local references and repeated occurrences) as they appeared
in the proof), and the set of all external references used in the proof.
The set of external references later serves as the smallest set of premises,
from which the theorem should be provable. However, it has to be
almost always enlarged by adding some implicit context (background)
information (e.g. type rules), that the Mizar checker uses for checking
the inferences.

Even though we are taking only the smallest set of formulas nec-
essary for proving the task, these tasks can be quite difficult for ATP
systems, since proofs of Mizar theorems are usually quite long, and
additionally, provers are not capable of using the necessary background
information (e.g. type rules) as efficiently as the Mizar checker. So to
have a more simple group of problems, fo tool also exports all Mizar
“Simple Justification” problems, i.e. the simplest Mizar inference steps
that usually look like:

then a*a <= a*b & a*b < b*b by A1,AXIOMS:25,REAL_1:70;

which tells Mizar that the fact “a*a <= a*b & a*b < b*b” should be
directly provable (keyword “by”) from the previous formula (keyword
“then”), which here was “0 < b & a <= b”, from the private reference
A1, which here was “0 <= a & a < b” and from theorem 25 in article
AXIOMS and theorem 70 in article REAL 1. The Mizar checker pro-
ceeds by negating the conjecture, and employing number of methods4,
to try to derive a contradiction from the negated conjecture and the
referenced premises.

2 While MML denotes the collection of all Mizar articles, created by humans, the
internal Mizar database is another part of the system, used for efficient storage and
fast access to those parts of Mizar articles, that can be reused in other articles.

3 Inference steps in Mizar are usually justified by giving labels of other for-
mulas, from which the new inferred fact should follow. These formulas are either
inferred locally earlier in the proof (private references), or taken from MML (library
references).

4 The probably most detailed available description of the methods used by the
Mizar checker is in (Wiedijk 2000), some specific methods are also discussed in
(Naumowicz and Byliński 2002).
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8 Josef Urban

The Mizar checker is not a complete theorem prover, since speed is
also important for proof assistants5, and additionally, it is not desirable
from the point of the legibility of the proofs (important e.g. when
generalizing some theory, or for some future educational applications
(Dahn 2001)), to have the checker too strong. So the exported checker
(Simple Justification) problems, should generally be quite easy for ATP
systems, though exceptions to this might occur, again due to efficient
handling of the background information in the checker, or due to its
quite strong congruence-closure based equality handling.

We do not go here into the details of the translation of various
Mizar constructs, and of the more complicated logical framework, into
untyped first order format suitable for ATP systems. This is explained
on examples from MML in (Urban 2003). However, it should be at least
noted here, that direct translation into the DFG format (Hähnle et all
1996) used by the SPASS prover (Weidenbach 2001) was chosen for
the first MPTP version. We realize, that the TPTP format (Sutcliffe
and Suttner 1998) is probably most widely used today, and in fact,
its support is already built into fo tool, because it shares some code
with the MoMM project, which uses the TPTP format. But it seems
that the SPASS prover performs best on the translated problems6,
probably because of its autodetection of sort theories and use of se-
mantic blocking (Ganzinger et all 1997) of ill-typed inferences, which
can often efficiently approximate the fast Mizar handling of its large
type and cluster background theories. As mentioned above, designing
the translation and making it work is a nontrivial task, and we need
the best prover available for testing, and we want to minimize the
number of translation layers, at least in the beginning. The dfg2tptp
tool (available in SPASS distribution) can be used now to translate
DFG tasks to TPTP format, but it is possible that we will make TPTP
(or rather the newly suggested TSTP (Sutcliffe et all 2003)) the default
format in the future, or will support more than one output format.

2.3. The Exported Library

Most current ATP formats (including the commonly used subset of
DFG syntax) are Prolog-based. This is quite advantageous, because

5 Complete MML has now about 60 MB, and its complete processing takes less
than 1 hour on 2GHz Pentium 4, which is quite important for doing large-scale
revisions of MML.

6 In the initial experiments we compared SPASS 2.0 with E 0.7 using a very low
(4 seconds) timelimit. and SPASS solved 1000 problems more (8727 against 7737).
Geoff Sutcliffe has recently tried the Vampire prover with 300s timelimit and proved
12828 problems, however this is hard to compare with the SPASS results given in
the Results section, since different hardware was used.
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problem inputs or databases can be quickly analyzed by loading them
into one’s favourite Prolog system. One of the goals in the design of
the translated library, is to maintain this possibility.

However, we also have to think about fast and memory efficient
access to various parts of the library, since the number of creatable
problems is very large (about 30000 for theorem problems and about
630000 for checker problems), and for problem creation, we want to be
able to implement efficiently some advanced functions, like signature
filtering. Such functions require indexing, which together with the need
for memory efficiency, call for a database (e.g. SQL) approach to the
library. Such an approach was also previously used for handling trans-
lated MML in the ILF system (Dahn and Wernhard 1997), from which
MPTP takes much inspiration.

The problem with such approach is that tables in database systems
are usually stored in some internal binary format, definitely not Prolog
parsable. This can be solved by various means, and the approach we
have chosen is again motivated by the effort to have the system as
simple and transparent as possible.

The library is now a collection of several files, usually containing
formulas in DFG format, expressing some part of the translated MML
structure. So all translated theorems are in one file, all definitions in
another, etc., and these files are Prolog readable (though sometimes
quite big). We keep small index file (also in Prolog format), telling
for each library file F, and each Mizar article A, at which point of
F the translated items from A are placed. Since most Mizar items
(e.g. theorems, definitions, constructors, etc.) are already numbered by
the Mizar system (e.g. REAL 1:70 is 70th theorem in article REAL 1),
and the naming scheme used by our translation respects this numbering
(again, the naming scheme is dealt with in more detail in (Urban 2003)),
it is thus usually very simple and fast (constant time) to compute a
position of some item in a library file.

This approach now takes care of most of the indexing problems,
necessary for fast access into the library files. The memory efficiency is
solved by accessing the library files as simple Berkeley DB databases of
the RECNO (record number) type. Berkeley DB is capable of working
directly with the normal text format for this kind of databases, so
there is no need for any other internal binary versions of the library
files. This has the additional advantage, that Berkeley DB is today
a very standard part of most Unix-like systems or distributions, used
by many applications, so users do not have to go through additional
installation process, which would be the case for SQL systems or Prolog
implementations.
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10 Josef Urban

The creation of the library is automated by using a large Makefile,
which is parametrized by a list of Mizar articles that should be pro-
cessed. This is usually just the list of all Mizar articles in their MML
processing order, however using just some initial segment of this list
(e.g. first 100 articles) is possible, for creating smaller versions of the
translated library. It takes about 2 hours on Pentium 4 2GHz, to create
the complete libraries from a Mizar distribution, most of the time being
taken by fo tool.

Additionally, the library contains input files for checker problems,
again in a Prolog format. Because of the number of checker problems,
these files can be quite large (several MB) even for a single article, and
would occupy about 1 GB, if not compressed. So for space efficiency,
we keep them compressed in a special directory. Decompression and
cleanup of these files are handled by the problem generating scripts.

2.4. Problem Generating Scripts

Problems creation and other MPTP functions are implemented in about
5000 lines of documented Perl modules and scripts, that make use of
the standard DB File Perl module for interfacing Berkeley DB files.
The architecture tries to be simple and extensible.

The basic MPTP utilities (Perl module MPTPUtils.pm) provide
database access to the translated library, functions for creating the
basic background theory for articles, based on their environment direc-
tives, and functions for problem printing.

As the results of first experiments confirm, a very important part
of the system is the default signature filtering module (Perl module
MPTPSgnFilter.pm), based on reasonings about the Mizar checker.
Signature filtering functions get the explicit premises for some prob-
lem, and the basic background theory created for the problem’s article
(i.e. formulas encoding type, cluster, and other information available
in the article), and starting only with the explicit premises, they try to
cut off all unnecessary background formulas. This is done by watching
the set of symbols present in the problem, and adding the necessary
type, cluster or other formulas for them, when certain criteria are met,
proceeding in a fixpoint manner. Graphs are built from symbols to
their background formulas before the fixpoint computation starts. The
criteria for adding new background formulas are derived from close
inspection of the Mizar checker’s work with this information, which is
quite a nontrivial matter7. However, the number of background formu-
las cut in this way from the problem is usually pretty high: the average

7 Explanation of the internal workings of the Mizar checker and its use of the
background information is beyond the scope of this article. The interested readers
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size of an unfiltered theorem problem is about 570 formulas, which
shrinks to about 73 formulas after filtering. This alone improves the
provers’ chances very significantly.

There are now several parameters to the filtering algorithm, allowing
more or less restrictive versions, and also the interface to the filtering
module is very simple, so that users can experiment with their own
versions. This is perhaps not so important when reproving the MML
theorems exactly (because then the necessary amount of filtering can
be to great extent derived from the Mizar checker), but is useful for
proving new theorems or finding new proofs for MML theorems.

The top-level problem creating script (Perl script mkproblem.pl) can
be used to create both theorem and checker problems corresponding to
the MML (reproving), as well as for creating new problems by speci-
fying arbitrary MPTP formulas as axioms for proving another MPTP
formula. The latter possibility can be used for all kinds of experiments,
and e.g. the experiments with the Mizar Proof Advisor described in
the Results section already make use of this possibility. The growing
number of options guiding the problem generation, signature filtering,
etc., is described in the mkproblem’s manual page.

Even though all the theorem problems can take (depending on the
filtering method, etc.) from 500 MB to about 3 GB, the problem
generation is usually quite fast (5-15 minutes on 2GHz Intel Pentium
4), allowing fast rebuilding of the problems when experimenting with
different options. Producing all checker problems takes about 10 GB.

Because of these sizes and the speed of problem generation, we
decided not to distribute the generated problems with MPTP. This
resembles a bit the approach used in the TPTP library, where only the
generic format of problems is included (and indeed, users preferring
other formats than DFG will have to perform similar problem trans-
lation work with tools like dfg2tptp or FLOTTER anyway). It is also
motivated by the fact, that additional functionality is planned, that
will increase the number of creatable problems even more.

2.5. The Database of Results

To facilitate the analysis of the results of provers run on MPTP, an
experimental SQL (MySQL) database has been set up for them. The
database is now restricted only to the theorem problems, mainly be-
cause of server limitations. Its detailed SQL structure is published at
(MPTPResults). It now contains four tables: probleminfo, proved, proof
and unproved. The probleminfo table contains information about the

can have a look at the source code of the filtering module, to get more on this, as
well as at the articles (Wiedijk 2000) and (Naumowicz and Byliński 2002).
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problems, independent of any prover runs. These are now entries like
length of the Mizar proof, number of problem formulas, or info about
the symbols occurring in the problem. The “proved” table contains
statistics from successful provers’ runs on the problems, while “un-
proved” contains unsuccessful runs. The “proof” table contains just
the complete proofs corresponding to the “proved” table, and is kept
separately from that table only because of its size and assumed limited
use. A web interface to the database allowing arbitrary SQL selects
is at http://lipa.ms.mff.cuni.cz/phpMyAdmin-2.4.0 . This is now
mainly used to look for suspicious spots in the translation, e.g. by
comparing the length of a Mizar proof, with the length of the proof
found by a theorem prover.

We would like to encourage MPTP users to contribute their results
into the database, however, it is necessary to say that the structure
of the database may still change a lot in the early versions. We will
probably also have to find some “interestingness” criteria for including
results into the database.

3. Problems, Limitations and Future Extensions

There are now several problems and limitations when using MPTP.
Their up-to-date description and suggested workarounds are present
in files README MPTP.txt and MPTPFAQ.txt distributed with the
system.

Several problems are caused by the infinite axiomatization (Tarski-
Grothendieck set theory) used by Mizar, which leads to allowing second-
order “schemes” in the language. The language also allows usage of the
Fraenkel (“setof”) operator. Because of the very restricted usage of the
schemes, this can be solved in future versions by instantiating them,
whenever they appear. Similarly, the Fraenkel terms can be “explained
out” by adding axioms like:

x in {F(x1,...,xn): P[x1,...,xn]} iff

ex x1,...,xn st x = F(x1,...,xn) & P[x1,...,xn]

(together with the Extensionality Axiom, if it is not already part of
the problem) which actually is exactly how the Mizar checker handles
them.

We now do not keep track of the arithmetical evaluations (e.g. 6 =
(8 + 10)/3) performed by the Mizar checker. Some experiments have
been done with using numeral encoding and some axioms of arithmetics
to handle this, but it usually makes the problems much harder, with
explosion of derivations of arithmetical facts. Our preferred way will be
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to watch these inferences directly in the Mizar checker, and add them
as axioms (e.g. 18 = 8 + 10) whenever necessary. We see the long term
solution of this problem in including efficient decision and evaluation
procedures directly in ATP systems. However this is a nontrivial task.

Similarly, for the theorem problems, we need to get from the Mizar
verifier information about its implicit unfolding of definitions inside
proofs. Such unfoldings are controlled by the Mizar “definitions” envi-
ronment directive, and the used definitions do not appear among the
proof references. Again, adding all definitions made accessible by the
“definitions”directive seems to make the problems significantly harder.
Another solution is to try to use the signature filtering, to cut the
space of all accessible definitions. Several options for this are already
implemented in the development version of MPTP scripts.

Signature filtering seems to be working quite well now, especially for
the checker problems. We use it for theorem problems too, however the
current version may now in some cases be too strong (i.e. prune too
much). The problem is, that we only use the external proof references,
to create the initial symbol set that is used for the fixpoint computation.
This is sound for checker problems, but there may be additional lemmas
in the theorem problems, containing additional symbols, and causing
that additional background formulas about those symbols might be
needed. The solution that we plan to use for this, is to collect not only
all external references appearing in proofs, but also all symbols present
in the proofs, and use them as the initial symbol set for signature filter-
ing. However, the estimate is, that approximating this by the symbols
from external references should work well for most theorem problems
in the first version.

Another problem is that on the contrary, the background theory can
be too strong, because it is computed for full articles, and contains all
background items introduced in them, which can possibly be used to
justify some theorem coming in the article before them. This can be
solved later e.g. by tagging all database items with their positions in
Mizar articles.

It should be also noted that exact Mizar-like signature filtering is
only important for exact reproving of MML theorems, which is not the
only goal of the MPTP system (however important it is, e.g. for testing
the quality of the translation). For proving theorems in new ways, or
proving new theorems, efficient signature filtering over such a large
library can, in most cases, only be heuristical, as it is a special version
of the general problem of finding the most suitable lemmas from the
library for proving an arbitrary new formula.

The probably largest future extension that we plan, is to export
the structure of Mizar proofs too. This will allow all kinds of exper-

mptp.tex; 3/06/2004; 17:11; p.13



14 Josef Urban

iments with lemma conjecturing or theory development. Right now,
the library already makes it possible to do experiments with replacing
theorem references with the references used in their proofs to arbitrary
level, thus creating harder and harder problems. However, the problem
generating scripts do not implement this option yet (though there is
nothing difficult about it), and we may choose to wait with it until the
full proof structure is available, and implement it more generally then.

Another line of development is to take into account, that most ATP
systems do the main work on the clause level8. As of now, we have the
integrity of the translated library on formula level, but skolem sym-
bols are introduced during CNF translations done by provers, causing
inconsistencies across various CNF problem inputs and the resulting
proofs. That’s why it would be good to have also a direct export of the
library into CNF, introducing skolem symbols consistently.

There might be also some more experimenting with efficient encod-
ing of the type information. We discuss this a bit more in (Urban 2003),
where the inclusion-operator encoding of types suggested in (Dahn
1998) is also mentioned. A lot of experience in this area has been gained
recently from the implementation of the MoMM project, where efficient
(even though incomplete) type handling is crucial. However, as long as
we are using SPASS with its efficient bottom-up sort mechanism, this
matter is probably not pressing.

Finally, it would be nice to have more functions for comparing ATP
proofs with Mizar proofs, or even some tools for at least semiautomatic
translation of ATP proofs into Mizar. This would be useful for integrat-
ing well trained ATP systems as advice for Mizar authors. However, this
is quite complex task, because of the very different proof formats, level
of detail, and complicated structure of the Mizar language.

When speaking about all these possible improvements we should also
note that the preferred goal is to have at least one theorem prover, that
would be very much optimized for the Mizar problems (e.g. even by im-
plementing some efficient Mizar-like type handling algorithms directly),
because that might in turn boost the usability of the Mizar system
and ease of formalization. That’s why we will prefer to implement the
features that go “in depth”, rather than e.g. spending time on providing
support for as many provers as possible. The reason for keeping the
structure of the system simple, transparent and documented, is also to
make it easy for others to cooperate, and to allow them to implement
easily the features that they need.

8 The OSCAR (Pollock 1996) prover (or rather AI system) being a notable ex-
ception from this rule, also the “lazy” clausification implemented in the Saturate
system (Ganzinger and Stuber 2003) is interesting from this point of view.
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4. First Results

MPTP 0.1 is based on MML 3.44.763, so all results refer to this ver-
sion. There are 37617 theorem numbers in that MML. 4090 of them
are canceled (i.e. unused in MML, but occupying the namespace, for
the sake of continuity of the theorem numeration). So there are 33527
usable theorems in MML. Three of them are in fact set theory axioms
from the article TARSKI, and hence without any proof. Proofs of 6078
of these theorems contain references that are not handled by MPTP 0.1
(either schemes or top-level non-theorem assertions in Mizar articles),
so these problems are not eligible for reproving (though they are eligible
e.g. for experimenting with finding new proofs). So for reproving, we
are left with 27449 theorems (the 3 axioms are not worth taking special
care of).

For all experiments we use the SPASS prover version 2.1, with 200
MB memory limit. The hardware is a cluster of computers with 700
MHz Intel Pentium-III processors running Debian GNU/Linux. Each
problem is always assigned to a single processor

4.1. Reproving

4.1.1. Reproving Filtered Problems

The first basic experiment consisted in reproving the 27449 MML the-
orems, in as advantageous a setting as possible. This was done also in
order to have some benchmark for other experiments.

We applied the default checker-based signature filtering, when cre-
ating the problems. Each problem was tried with 300s timelimit. The
following table shows the results, and the figure shows how much time
is needed to prove percentages of all the 11222 provable problems.

Table I. Experiment 1

proved completion found timeout out of memory unknown total

11222 625 15149 352 101 27449

The average time for proving a provable problem is 14.12s. As the
graph indicates, about 90 percent of all provable problems have been
solved within 40 seconds, so after this “calibration” we decided to use
for future experiments only 40s timelimit, to be able to conduct more
of them. The overall CPU time needed for this full 300s experiment is
about 70 days.
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Figure 1. Time needed to solve percentage of problems in Experiment 1

The completions (i.e. those 625 problems for which SPASS found
that the negated conjecture is not in contradiction with the axioms)
can usually be explained by some of the reasons described in the Prob-
lems section - it can be lack of implicit definitions, or arithmetical
evaluations, etc. On the other hand, some of the proved problems are
sure to be proved in a MML-incorrect manner, e.g. as noted above, by
having too strong background theory.

4.1.2. Reproving Nonfiltered Problems

To have some measure of how good the signature filtering is, we also try
to prove the nonfiltered versions of the 27449 MML theorems. As noted
above, only 40s timelimit is used, so comparisons should be done with
0.9 ∗ 11222 = 10100 proved problems from the previous experiment.

Again, the following table shows the results, and the figure shows
how much time is needed to prove percentages of all the 3984 provable
problems.

Table II. Experiment 2

proved completion found timeout out of memory unknown total

3984 11 23447 2 16 27449

The average time for proving a provable problem is 6.54s. As already
noted, the nonfiltered problems are much larger than the filtered ver-
sions, and within the same time, only about 40 percent of the amount
for filtered versions is solved. Only for 191 problems it is the case, that
the nonfiltered version was solved, while the filtered version not, so
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Figure 2. Time needed to solve percentage of problems in Experiment 2

running the nonfiltered versions is going to improve our knowledge in
only about 2 percents of filtered-provable cases.

4.2. Mizar Proof Advisor

The first results are quite encouraging, especially if we realize that all
are produced in a “push-button” manner, and there are still a lot of
possibilities for improvement e.g. with optimizing ATP’s performance
by tuning many of their parameters, learning optimal orderings for
various domains, etc.

Given these results, the logical next step is to really try to employ
ATP systems, to assist Mizar authors with writing their formalized
articles. To be able to do this, we have to turn attention to the very
practical and pressing problem of choosing premises for a proof of an
arbitrary formula, mentioned in the Motivation section.

One obvious answer to this problem, is to try using previous proof
experience extracted from MML, to suggest a limited number of
premises, that are most likely to be useful for proving an arbitrary
formula. This idea is quite distant from the world of exact automated
theorem proving, where completeness (though obviously very theoret-
ical in the view of available resources) is one of the main issues, but
we believe that it is an important aspect in humans’ superiority over
current ATPs when doing mathematics in large domains.

There are many possible machine learning and statistical approaches
to the task of extracting and using proof experience from a corpus
like MML, and some of them might even lead to interesting induc-
tive/deductive architectures. However, for the beginning we decided
to use a straightforward and well-known machine learning method,
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for which tools are already available, and which could also serve as
a benchmark for further more sophisticated approaches.

So the setting we chose for such a first attempt is following: We use
a feature (attribute) based machine learning framework, in which the
symbols (or rather constructors) present in formulas are the features
that characterize them. This can be later improved e.g. by encoding
parts of the formula structure as new features, or by switching to first-
order learning systems. The output that we want from the system are
MML theorems, ordered by their chance to be useful in the proof. This
leads to the simple setting, in which there are many targets (MML
theorems), characterized by their features (symbols occurring in them).
Additionally, if theorem T , containing symbols C1, . . . , Cn was in MML
proved by theorems or definitions (shortly references) R1, . . . , Rm, we
also want our system to notice, that not only T might be useful for prov-
ing something containing C1, . . . , Cn, but also its references R1, . . . , Rm

could be useful.
This idea might be recursively expanded (to include references of

references, etc.), and further improved e.g. by using lower weights for
more indirect references, but we postponed such tuning experiments
for later time.

We have a very large number of features and targets, since there
are about 40000 targets (references) and about 7000 features (con-
structors), and also quite a large number of training examples - about
33000 proved theorems. After some experimenting with various ma-
chine learning tools, we chose for the learning the SNoW (Sparse Net-
work of Winnows) learning architecture (Carlson et all 1999), used
mainly for natural language processing tasks. It is designed to work
efficiently in such tasks, where the number of features and targets is
very large. SNoW implements several learning algorithms, from which
the naive Bayes seems to work best on our data.

The option to run the trained system in a server mode is already im-
plemented in SNoW, so regardless of the theorem proving experiments,
it was very easy to set up a server that is already now providing hints
to Mizar authors.

4.2.1. Evaluation of the Advisor

In the first experiment, we used the standard 10-fold cross-validation,
to test the prediction capability of SNoW trained on our data. The
33527 examples were randomly split into 10 equally large sets, and in
10 runs, SNoW was trained on the 9 sets and evaluated against the
missing set.

In the testing mode, SNoW outputs for each example the list of
hints (references), that it evaluates as useful for the example, ordered
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by their expected utility. We are interested in how good such predictions
are, and in this case, this is measured by looking at the example’s real
references, and counting their ratio among the hints given by SNoW,
as the hint limit is increased. This is measured on the scale ranging
from 1 to 100 hints. We decided to modify this ratio at the beginning,
so that if we e.g. only require one hint, and that hint is correct (i.e.
it is among the real references), the success ratio is 1 instead of 1 /
(number of real references), which we think corresponds more closely
to the intuitive idea of “success” of the prediction. The number of real
references is usually much lower than 100 (about 10 on average), so
this modification effects only the very beginning of the scale, and at
numbers larger than 20, it is already quite correct to interpret the ratio
also as the coverage of the real references among the SNoW hints. The
following graph shows this value, averaged across the 10 leave-one-out
SNoW evaluations.
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Figure 3. Ratio of necessary references in SNoW hints

The drop at the beginning of the graph is caused exactly by our mod-
ified definition of “success”. The final value of 0.7 for 100 hints means
that on previously unknown formulas, about 70 percent of references
needed for their proof will be present among the first 100 hints.

We should note, that needed references is not exactly correct expres-
sion here, the exact meaning is references used for the MML proof. It
is possible that the SNoW hints will lead to an alternative proof of
the formula, and actually, we plan to do experiments exactly with the
purpose to use this difference to try to find alternative proofs for MML
theorems.

It could be suggested, that even though we do the testing on un-
known data, the 10-fold cross-validation does not exactly correspond
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to the setting in which SNoW will be used most often. The typical
situation is, that all of MML is already known, and the author is writing
a new article, that will be in the end appended to MML. In more detail,
it would be possible to train SNoW also on the theorems proved so far
in the article written by the author.

That’s why we run another evaluation, corresponding to this setting.
SNoW is incrementally trained on the MML examples in the MML
processing order, each time having complete information about the
preceding articles and theorems, and having no information about the
subsequent articles and theorems. Obviously, in this setting, it only has
sense to ask from the SNoW the proof references of the tested theorem
as hints, the theorem itself cannot be hinted, as it was not yet seen by
the system. The following graph shows results of such evaluation.
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Figure 4. Ratio of necessary references in SNoW hints 2

It is also interesting to see how the ratio changes as the MML grows,
which is for the limit value 100 shown on the next graphs. Since the
discrete graphs ranging across all 33000 MML theorems are poorly
readable, the first graph applies smoothing across the previous 1000
values, and the second applies smoothing across the previous 100 values.

4.3. Proving New Theorems Using the Advisor

Having prepared both MPTP and the Proof Advisor, we can finally
conduct the experiment with proving previously unknown formulas.
For that, we use the hints provided by the incremental training and
testing on growing MML, described in the previous section. As noted,
it means that at each point, the theorem we are trying to prove is the
most recent addition to the MML, it was never seen before nor could
be used as a reference for another theorem.
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Figure 6. Hint ratio for limit 100 as the MML grows, smoothing = 100

We have to choose our policy for selecting the number of hints for
constructing the proof problems. Choosing too many creates the danger
of “suffocating” the prover, like in the case of using the nonfiltered
background knowledge, and choosing too few leads into the risk of
incompleteness. Looking at the hint ratio graph from the incremental
training, we decided to use for this first experiment the value of 30
hints, which on average guarantees about 50 percent of the original
MML proof references. Since the SNoW system also outputs the predic-
tion strengths, when it evaluates the targets, maybe a more reasonable
option for future experiments could be selecting the number of hints se-
lectively, according to their prediction strength, rather than uniformly
with one limit for all.

We apply the standard signature filtering to the problems, although
as noted, it is (mostly) guaranteed to preserve completeness only for
reproval tasks. The Advisor-like approach could be in the future ex-
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tended to handle also background creation. All problems are again run
with 40s timelimit, all other settings being same as for the reproval
experiments, with the exception of the number of problems attempted
- unlike in reproval, where problems with unexported references were
discarded, we attempted all 33527 MML problems, since SNoW only
provides valid references as hints. The results are shown in the following
table.

Table III. Experiment 7

proved completion found timeout out of memory unknown total

4825 7 28580 69 46 33527

So even with very straightforward implementation of the Proof Ad-
visor, various completeness issues still involved in the first version of
MPTP, and some quite arbitrary choices, like the number of hints used,
and practically no ATP optimizations, it is already possible to auto-
matically prove within 40 seconds about every seventh newly attempted
Mizar theorem.

It might be argued that there are more and less difficult theorems
in MML, and that e.g. in terms of number of lines written by Mizar
authors, proofs of these theorems will probably be shorter, so the
amount of work saved to Mizar authors will be less than this ratio.
The obvious answer is that ATPs can be in this mode applied to any
Mizar formula, not just top-level theorems, so even the proofs of hard
theorems can thus be made significantly simpler for the formalizers,
by applying ATPs to the lemmas that occur during writing the proofs.
As noted, we hope to include the full proof structure into the next
MPTP release, which will enable us to quantify, to what extent this
really applies to the current MML. Finally, to put these results into a
proper context, note that in (Wiedijk 2002), the cost of creating the
MML library is estimated to about 90 man-years.

5. The Second Goal of This Article

The main goal of this article was to provide a description of the MPTP
system and an overview of its first results. However, there is also a
secondary goal. We wanted to persuade the readers (especially those
working in ATP and formalization projects), that cooperation between
ATP systems and large formalization efforts is useful for them.
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This may seem trivial, but author’s experience gained during im-
plementing MPTP is, that it is not, and a considerable part of such
effort is spent on persuading. Even with essentially first-order systems
like Mizar, there are number of features that make the translation to
ATP formats and efficient use of ATP systems on translated problems
difficult. Even though ATP-friendly implementation of such features is
in most cases possible, it usually has low priority, as the formalization
people usually look quite skeptically at the possibility of having some
real benefits from ATP systems. Similarly, ATP systems today are quite
firmly seated in the simple unrepeated-axioms-conjecture paradigm for
problems formulation and solving. It is frowned upon, if an ATP system
has some built-in domain optimizations, and it is even difficult to do
trivial changes to common ATP input formats, that would allow to
express previous knowledge to hint the provers. It is good to have
provers that perform well on artificial problems, but it is even better to
have domain-optimized provers being of some use in real mathematics.

We hope that the presented experimental results already show, that
the cooperation is useful, and worth supporting by more than just
words.
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Abstract

The constructor system of the Mizar proof checking system is ex-

plained here on examples from Mizar articles, and its translation to

untyped first-order syntax is described and discussed. This makes

the currently largest library of formalized mathematics available to

first-order theorem provers.

1 Introduction, Previous Work

Mizar [Rudnicky 92] is a system for computer checked mathematics. In more
detail, Mizar is associated with several things:

• The Mizar language ... this is the language in which Mizar articles
must be written, so that they can be checked by computer.

• The Mizar Mathematical Library (MML). This is the growing (now
about 700) collection of Mizar articles that have already been written
and computer checked and the notation, definitions, theorems and other
Mizar constructs created in them can be used for writing new Mizar
articles. Various presentations of the MML exist today: Formalized
Mathematics, online html-ized abstracts, Mizar Encyclopedia.

1



2 GENERAL DESCRIPTIONS 2

• The Mizar checker and other software utilities for working with articles
and MML.

• The Mizar project headed by A.Trybulec, taking care of the things
named above as well as other things related to Mizar.

Several introductions to the Mizar language as well as to the practical
aspects of writing Mizar articles exist today e.g.
[Bonarska 90, Muzalewski 93, Rudnicky 92, Wiedijk 99]. Although it is much
recommended to have a look at one of these introductions, we will try here to
explain the features of Mizar, which are relevant for the first order translation.

The probably largest effort at translating the MML to first order syntax
was carried out several years ago by the ILF group [Dahn 97]. The work
described here is to a great extent inspired by the previous ILF work, and
many ideas used here originate from there. We give a short description of it,
as well as its relationship to the present work at the end of this article.

2 General Descriptions

2.1 The Mizar Language

The detailed specification of the Mizar language is given in [Syntax]. For the
reader’s convenience, text version of this specification is given in Appendix
A. We will loosely follow this specification here, notions that are exactly
defined by this syntax will be written in italics here.

The main parts of a Mizar article are definitions (Definitional-Items),
Theorems and Schemes. It is possible to define functions (Functor-Definition),
predicates (Predicate-Definition), types (Mode-Definition, Structure-Definition)
and attributes (Attribute-Definition).

Attributes are unary predicates handled in a special way by the sys-
tem. The rules of attribute handling are defined by the user in Cluster-

Registrations.

To exemplify the abstract syntax, we show here the beginning of the basic
article about real numbers (real 1.miz):
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:: Basic Properties of Real Numbers

:: by Krzysztof Hryniewiecki

::

:: Received January 8, 1989

:: Copyright (c) 1990 Association of Mizar Users

environ

vocabulary REAL_1, NUMBER;

constructors ARYTM;

requirements ARYTM, SUBSET;

notation ARYTM, SUBSET_1;

clusters ARYTM, ARYTM_3;

definitions TARSKI, ARYTM;

theorems ARYTM, AXIOMS;

schemes BOOLE;

begin

definition

mode Real is Element of REAL;

end;

reserve r for set;

reserve x,y,z,t,a,b,c,d for real number;

:: Basic properties of ’+’, ’*’

canceled 8;

theorem

Th9:

z<>0 & x*z=y*z implies x=y

proof

assume z<>0;

then consider z’ being real number such that

A1: z * z’ = 1 by AXIOMS:20;

assume x * z = y * z;

then x * (z * z’) = y * z * z’ by AXIOMS:16;
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then x = y * 1 by AXIOMS:16,A1;

hence thesis;

end;

theorem Th10:

x + z = y + z implies x=y

proof

consider z’ being real number such that

A1: z + z’ = 0 by AXIOMS:19;

assume x + z = y + z;

then x + (z + z’) = y + z + z’ by AXIOMS:13;

then x = y + 0 by AXIOMS:13,A1;

hence thesis;

end;

definition let x be real number;

func -x -> real number means :Def1: x + it = 0;

existence by AXIOMS:19;

uniqueness by Th10;

assume A1: x<>0;

func x" -> real number means :Def2: x * it = 1;

existence by AXIOMS:20,A1;

uniqueness by Th9,A1;

end;

definition let x,y be real number;

func x-y equals :Def3: x+(-y); correctness;

func x/y equals :Def4: x * y"; correctness;

end;

definition let x,y be real number;

cluster x-y -> real;

coherence

proof

x-y = x+-y by Def3;

hence x-y REAL by ARYTM:def 2;
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end;

cluster x/y -> real;

coherence

proof

x/y = x*y" by Def4;

hence x/y REAL by ARYTM:def 2;

end;

end;

The article starts with some commented bibliographic information, after
that follows Environment-Declaration (Directives saying which parts of the
MML are used by this article). The Text-Proper part of the article starts with
Mode-Definition of the mode Real, after that are two Reservations, then
two Theorems with Proof, and finally three Definitional-Items. The first
Definitional-Item defines two unary functions (“-” and “”” ) , the second
defines two binary functions (“-” and “/”) and the third consists of two
Cluster-Registrations, which add the attribute “real’ to the result of applying
functions “-” and “/”.

All Mizar terms are typed. There is a largest (default) type called “set”
or “Any”. All other types have one or more mother types. Types of vari-
ables are given either in global Reservations or local Loci-Declarations or
inside quantified formulas. Types of other terms are computed according to
Functor-Definitions. Types can have arguments (be parameterized) in Mizar,
e.g. “Element of X” or “Function of NAT, REAL” are legal types with one
or two arguments, respectively.

Type translation is the largest part of the first order translation. There
are two possible basic approaches to type translation:

• Types can be thought of as set-theoretic classes (e.g. type “set” being
the universal class, type “Element of X” being the set of all elements
of X, type “Integer” being the set of all integers, etc.).

• Types can be thought of as predicates .... thus “set(X)” is true for
any X, “Integer(X)” is true iff X is integer, and “Element(X,Y)” is
true iff X ∈ Y
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Both approaches have some advantage, we use the second (predicate)
approach, mainly because some provers (e.g. SPASS [Weidenbach et all 99]
have optimizations available for monadic predicates, to which all the zero-
argument types translate.

In [Dahn 98] another translation of types based on the idea of inclusion
operations ([Goguen 92]) is suggested. This translation has the potential to
handle single inheritance type hierarchies efficiently, however this efficiency
is lost in the case of Mizar attributes, which are a very large part of the
Mizar type system. We hope that it might be possible to combine this
kind of translation for the single inheritance part of Mizar with the efficient
optimizations done by SPASS in the future.

2.2 Syntactic Levels

The Mizar language handles a very large database of articles about different
parts of mathematics and this necessarily leads to notation conflicts. The so-
lution to such conflicts is introduction of two syntactic levels of the language:
the pattern level and the constructor level.

Constructors are the real unambiguous functions, predicates, types and
attributes to which the patterns are translated before any proof checking
takes place. Patterns are mapped to the constructors, they accommodate
the need for having different symbols for the same constructor or vice versa
(same symbol for different constructors).

The process of mapping patterns to constructors is done separately for
each Mizar article depending on its Environment-Declarations and is usually
quite nontrivial.

Example: binary symbols “in” and “<‘” define different patterns, but
when dealing with ordinals, they are mapped to the same constructor, i.e.
“A in B” and “A <‘ B” cannot be distinguished when translated to the con-
structor level.

Definitions can influence both the pattern and the constructor level. Typ-
ically, a definition causes a new pattern and also a new constructor to be
defined, but in many cases there is no effect on the constructor level.

For the purpose of translating Mizar articles into first order syntax, only
the constructor level is important, the patterns can be thought of as a “syn-
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tactic sugar” added on top of the constructors.

2.3 First Order Formats, Outline of the Translation

Several kinds of first order syntax are used today for first-order provers, e.g.
TPTP format [Suttner and Sutcliffe 98], DFG format [Hahnle et all 96], Ot-
ter format [McCune 94] and others. We chose direct translation into DFG
format, since our immediate purpose was to experiment with the SPASS
prover. More generic approach is certainly desirable, however, at a first
glance, several such approaches come into mind (e.g. ILF-like approach
[Dahn 97], TPTP-like approach, or even adding direct Mizar support for
other formats than just DFG), so we postponed such decisions for later time.
Note that the dfg2tptp tool can be used for translation to TPTP and thus
(using TPTP tools) to virtually any other syntax.

So the general approach to translation is following:

• We use parts of Mizar (Parser, Analyzer) which translate the Mizar
articles to the constructor level, where our first order translation starts.

• We give absolute (context independent) names to all constructors1.

• Definitions of constructors usually translate to several first order for-
mulas, since we have to translate both the type hierarchy information
given in the definitions and the actual Definiens.

• Sometimes also additional properties (e.g. commutativity, transitivity,
etc.) of the defined constructors are stated inside definitions. They are
also translated into corresponding first order formulas.

• All formulas are relativized with respect to the typed variables occur-
ring in them (using the above mentioned predicate translation of types).
So e.g. universally quantified Mizar formula

“for x being Real holds x-x = 0” translates to first order formula

“Real(x) implies x-x = 0“.

1The naming scheme we use in what follows has obviously no importance for theorem

provers, however, it has become standard in various Mizar presentations, allowing their

interoperability.
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Remark: The actual DFG syntax translation of the above mentioned Mizar
formula is:

forall([B1], implies(v1 arytm(B1), equal(k3 real 1(B1,B1),0))).

However, for explanation purposes, we use here rather the user-defined sym-
bols instead of the absolute constructor names, and also for the sake of better
readability, we do not strictly adhere to the DFG syntax of formulas.

Next we give a detailed explanation of the translation for all kinds of Mizar
definitions.

3 Translation of Mizar Definitions

3.1 Mode Definitions

Types in Mizar can be defined using either Mode-Definitions or Structure-

Definitions. We deal with modes first. Since structures are more complicated,
we postpone them after the explanation of functions.

As already stated, the translation of the largest (default) type “set” is
a predicate that always holds true (“set(X)” is true for all terms X). So
omitting relativization by this predicate is logically correct, and we do it for
the sake of better readability of translated formulas.

For all other modes, the syntactic structure of Mode-Definitions is:

mode Mode-Pattern ( [ Specification ] [ means Definiens ]

Correctness-Conditions ; | is Type-Expression ; ) { Mode-Synonym } .

Example:

definition

mode Real is Element of REAL;

end;

This is the first definition from real 1, defining the mode “Real” as a
shorthand for the (already known) mode “Element of REAL” (we give the
definition of the mode “Element” as the next example, the constant “REAL”
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is defined in the article arytm.miz and has the meaning of the set of all real
numbers).

The Mode-Definitions that use the keyword “is” are called “expandable”
definitions in Mizar. Such definitions do not introduce a new constructor,
they merely create a new pattern (given here by the symbol “Real” and
arity 0) and map it to already known constructors ( here the constructors
corresponding to the patterns “Element” and “REAL”, i.e. “m1 subset 1”
and “k1 arytm” in absolute notation). Since our translation works directly
with the constructor level, there is no work to be done for such “expandable”
definitions.

Example:

definition let X;

mode Element of X means

:Def2: it in X if X is non empty

otherwise it is empty;

existence by BOOLE:def 1;

consistency;

end;

This is a definition of the mode “Element of X” from the article subset 1.miz.
The Loci-Declaration “let X;” declares the variables occurring in the defi-
nition. Since type is not given for “X”, it defaults to the largest type “set”.

This definition omits the optional Specification part. If the Specification is
present in the definition, it gives a mother type for the newly defined mode.
If not, the largest type “set” is used as the mother type, i.e.

“mode Element of X means ...” has the same effect as
“mode Element of X -> set means ...” .

The Definiens after the keyword “means” consists of an optional Label-

Identifier and either a simple sentence or several sentences separated by the
keywords “if” and “otherwise”. The latter (Conditional-Definiens) is used
for “per cases” definitions.

In our example, the Conditional-Definiens distinguishes the case when
the mode argument X is non empty from the case when the mode argument
X is empty. The sentence for the first case states, that for any “it” (special
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variable used in definitions) being of the type “Element of X” means “it
in X”. The second case sentence says, that in the degenerate case when X is
empty, being of the type “Element of X” means to be empty too.

If the reader is curious about why the degenerate case is handled this way,
the answer is, that simply in many cases it turned out to be advantageous.

The keywords “existence” and “consistency” in the example introduce
Correctness-Conditions. The “existence” condition is compulsory for all
non-expandable modes, it states that the extension of the defined type is
non empty (here it is proved by referring to the definition 1 in article BOOLE).

The “consistency” condition states that the disjunction of all the cases
into which the definition was split, is true (it is trivial here).

The Mode-Synonym is not used in our example. If given, it just defines
another pattern mapped to the same constructor. In this example, the def-
inition creates both a new pattern (associated with the symbol “Element”)
and a new constructor (to which the pattern is mapped).

We create an absolute name for the constructor as follows:
The first letter denotes the kind of the constructor ... it is “m” for modes.

After that follows its article relative number, i.e. since this is the first mode
constructor in article subset 1, the number is 1. After that we append the
Mizar identifier of the article ... it is subset 1. So the absolute name is
“m1 subset 1”. This absolute naming is used quite often in various Mizar
presentations.

We translate types as predicates, so n-ary types will become n+1-ary
predicates, and e.g. the Mizar type qualification “X is Element of Y” will
be translated as “m1 subset 1(X,Y)”.

Next we want to encode the part of the type hierarchy created by this
definition. As noted above, the mother type of “Element of X” is the largest
type “set”. The translation would be following:

‘‘forall([X,Y], m1 subset 1(Y,X) implies set(Y)).’’

However, as already mentioned, “set(Y)” is always true and we chose not
to translate it, so in such cases (i.e. when the mother type is “set”), we do
not create the type hierarchy translation.
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We should mention that such formulas have to be normally relativized by
types of the variables occurring in them, so it would be:

‘‘forall([X,Y], set(X) implies (m1 subset 1(Y,X) implies set(Y))).’’

But the “pruning” of the type “set” would apply here too. This silent
pruning will be done in all following formulas.

Translating the definiens is straightforward. We translate the definition
formula for each case and conditionalize by the case assumptions. So the
first case (when “not(empty(X))” holds) translates to:

‘‘m1 subset 1(Y,X) iff in(Y,X)’’

Similarly, the second case (when “empty(X)” holds) translates to:
‘‘m1 subset 1(Y,X) iff empty(Y)‘‘

after conditionalization:
‘‘m1 subset 1(Y,X) iff ( ( not(empty(X)) and in(Y,X) )

or ( empty(X) and empty(Y) ) )’’

(instead of “empty” and “in” their absolute names would be used).

Finally, we translate the existence condition:
‘‘forall([X], exists([Y], m1 subset 1(Y,X))).’’

Mizar allows for explicit typing of terms using the (heavily overloaded)
keyword “is”. E.g.:

“for i being Integer holds (i > 0 implies i is Nat)”
is a legal Mizar sentence explicitly typing positive integers to natural

numbers.
Since we already translate types as predicates, there is no need to trans-

late the Mizar typing predicate “is”, and e.g. the atom “i is Nat” is
translated directly as “Nat(i)”.

3.2 Predicate Definitions

In comparison to first order predicates, Mizar predicates can have several
predefined properties (e.g. reflexivity, symmetry, etc.), and they also define
the type of their arguments. Predicate-Definition has following syntactic
structure:
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pred Predicate-Pattern [ means Definiens ] ; Correctness-Conditions

{ Predicate-Property } { Predicate-Synonym } .

e.g.:

definition let X,Y;

pred X c= Y means

:: TARSKI:def 3

x in X implies x in Y;

reflexivity;

end;

This is a definition of the subset relation from article tarski. Again first
comes a Loci-Declaration

“let X,Y;”, after that the Predicate-Pattern

“X c= Y”, then the Definiens

“x in X implies x in Y;” and finally one Predicate-Property is stated:
“reflexivity;”.

Correctness-Conditions occur only in redefinitions of predicates, redefini-
tions will be discussed later.

Again, this definition creates both a pattern and a constructor, the stan-
dard symbol for predicate constructors is “r”, so the absolute name would
be “r1 tarski” here.

The Definiens formula is simply translated as equivalence:
‘‘r1 tarski(X,Y) iff (x in X implies x in Y)’’

Predicate-Property can be:
symmetry connectedness reflexivity irreflexivity

So we add the corresponding theorem for such properties, here it is:
‘‘r1 tarski(X,X).’’

Pruning of the “set” relativization took place in the previous two formu-
las, without the pruning the translation would be:
‘‘(set(X) and set(Y)) implies (r1 tarski(X,Y) iff (x in X implies

x in Y))’’ and
‘‘set(X) implies r1 tarski(X,X).’’
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3.3 Attribute Definitions

As mentioned, attributes are unary2 predicates handled in a special way
by the system. The Cluster-Registrations, which define rules of attribute
handling will be explained later.

The syntactic structure of Attribute-Definition is:
attr Attribute-Pattern means Definiens ; [ Correctness-Condition ] { Attribute-

Synonym } .

Example:

definition let M;

attr M is limit means

:Def7: not ex N st M = nextcard N;

synonym M is_limit_cardinal;

end;

This is a definition of the attribute “limit” from article card 1 (saying
that a cardinal is limit iff it is not a successor of another cardinal). The vari-
ables M and N occurring in the definition were earlier in the article globally
reserved for type “Cardinal”:
“reserve K,M,N for Cardinal;”

Since attributes are in fact specially treated predicates, the syntax of the
definition is very similar to Predicate-Definitions. The only difference is the
usage of the keyword “is” in the Attribute-Pattern:
“M is limit”.

This definition uses the optional Attribute-Synonym slot:
“synonym M is limit cardinal;”, which adds another pattern.

So this definition creates two new patterns (bound to symbols “limit”
and “is limit cardinal”) and maps both of them to one newly created
constructor. The standard symbol for attribute constructors is “v”, so its
absolute name is “v1 card 1”.

2This is true only on the syntactic level. If the type of the attribute’s argument depends

on a variable, this variable also becomes an argument of the attribute. There are plans to

allow attributes with multiple arguments even on the syntactic level now.
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The Definiens is again translated as equivalence:
‘‘v1 card 1(X) iff not( exists([Y], equal(X, nextcard(Y))))’’.

Since the types of variables are nontrivial in this definition, we have to
relativize the formula:
‘‘Cardinal(X) implies ( v1 card 1(X) iff not( exists([Y], Cardinal(Y)

and equal(X, nextcard(Y)))))’’

A possibly negated attribute is called Adjective in Mizar. A finite set
of Adjectives is called Adjective-Cluster (or just cluster) in Mizar. Clusters
can be used as prefixes to types, e.g. “finite non empty set” uses the
Adjectives “finite” and “non empty” as a prefix to the type “set”.

Such types with non empty Adjective-Cluster are translated as a conjunc-
tion of all the predicates corresponding to the attributes and the predicate
corresponding to the underlying type, so here it is:
“finite(X) and not(empty(X)) and set(X)” for a variable X of the type
“finite non empty set”.

Again, the “set” can be pruned, so the translations is just ‘‘finite(X)
and not(empty(X))’’.

3.4 Functor Definitions

Functions in Mizar have to define the types of their arguments and the type
of their result. Several Functor-Properties (e.g. “commutativity”) can be
associated with them.

The syntax of Functor-Definition is:
func Functor-Pattern [ Specification ] [ ( means | equals ) Definiens

] ; Correctness-Conditions { Functor-Property } { Functor-Synonym } .

Example:

definition let x be real number;

func -x -> real number means :Def1: x + it = 0;

existence by AXIOMS:19;

uniqueness by Th10;

This is the definition of the unary function “-” from article “real 1”, already
mentioned above. The initial Loci-Declaration declares a variable x for the
type “number” with Adjective “real”.
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Type “number” is now defined just as a convenient synonym for the largest
type “set” (in article arytm), “real” is an attribute defined also in article
arytm. The Functor-Pattern is
“-x” here, and the Specification

“-> real number” defines the result type of the function. The Definiens

“:Def1: x + it = 0;” is the definitional formula of the defined function.
The Correctness-Condition “existence” states, that there exists an ob-

ject (of the desired type “real number”) conforming to the Definiens (here
it is proved by reference to the theorem 19 in article axioms).

“uniqueness” says that such object is unique (proved by previous the-
orem Th10). Before accepting a new Functor-Definition, the system always
checks these two conditions.

This definition creates one new pattern and one new constructor. The
standard Mizar symbol for functor constructors is “k” so the constructor’s
absolute name is ‘‘k1 real 1’’ (first functor in article real 1). We need
to translate the typing, the Definiens and possibly the Functor-Properties

(none in this case).
The typing translates to:

“‘real number’(X) implies ‘real number’(k1 real 1(X)).”

Following the note about Adjective-Clusters, ‘real number’(X) trans-
lates to
“(real(X) and number(X))”
and since “number” is just a synonym for “set” it is pruned to just “real(X)”.
Since “real”’s absolute name is “v1 arytm”, the exact translation is:
“forall([X], implies( v1 arytm(X), v1 arytm(k1 real 1(X))))”.

The Definiens is translated by first instantiating the special variable “it”
with the Functor-Pattern, yielding:
“x + (-x) = 0;” and translating the result formula, which gives:
“equal(+(x,k1 real 1(x)),0)”.
After relativization and replacing “+” with its absolute name “k3 arytm”,
we get:
“forall([X], implies( v1 arytm(X), equal(k3 arytm(X,k1 real 1(X)),0)))”

Here is another example of Functor-Definition from the article real 1:
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definition let x,y be real number;

func x-y equals :Def3: x+(-y); correctness;

This differs from the previous definition in using the keyword “equals” in-
stead of the keyword “means”. A binary function “-” operating on real
numbers is defined here. The Definiens “x+(-y);” is not a formula, but a
term in such definitions. This definition creates one new pattern and one new
constructor with absolute name “k3 real 1”. The translation of the typing
is similar to that of the previous example:
“forall([X,Y], implies( and(v1 arytm(X),v1 arytm(Y)),

v1 arytm(k3 real 1(X,Y))))”.
As suggested by the Mizar keyword “equals”, the Definiens is translated as
equality:
“equal(k3 real 1(X,Y), +(x,(-y)))”, more exactly:
“forall([X,Y], implies( and(v1 arytm(X),v1 arytm(Y)),

equal(k3 real 1(X,Y),k3 arytm(X,k1 real 1(Y)))))”

This Functor-Definition, uses the single Correctness-Condition introduced
by the keyword “correctness”. This is mostly used as a shorthand, when
proving the existence and uniqueness conditions is trivial and the system can
prove them without any hint.

3.5 Structure Definitions

Types in Mizar are defined either as modes or as structures. Structures cor-
respond (to some extent) to the “product” types of various other languages.
The syntax of Structure-Definition is:

struct [ ( Ancestors ) ] Structure-Symbol [ over Loci ] (# Fields #)

;

Example: The simplest structure in Mizar is “1-sorted” defined in article
struct 0:

struct 1-sorted(\# carrier -> set \#);’’

It has only one field “carrier” of the type “set” and no Ancestors. Encap-
sulating the most general type into structure has little mathematical use of
itself. So the main use of such structure is to state in an abstract way the
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properties, which are common to all other structures containing a “carrier”
field. Such structures will have “1-sorted” as an Ancestor.

Example:

struct(1-sorted) TopStruct (# carrier -> set,

topology -> Subset-Family of the carrier #);

This is definition of the structure TopStruct from the article about Topo-
logical Spaces “pre topc”. This is not a topological space yet, the common
practice in Mizar in such cases is first to define the underlying structure (here
the TopStruct) and after that the needed type (TopSpace in this case) is de-
fined as the structure with some additional properties. Here, the definition
of TopSpace is:

definition

mode TopSpace is TopSpace-like TopStruct;

end;

where the attribute “TopSpace-like” (defined also in pre topc) names the
usual conditions for a Subset-Family (the “topology” slot of TopStruct)
to be a topology.

Structures can define their ancestor structures. All Fields of an ancestor
must also be Fields of the defined structure. In our example, there is given
one ancestor “1-sorted”.

Ancestors of structures are treated in a way similar to the treating of
mother types of modes by the system, i.e. they also define the type hierarchy.

The Structure-Symbol is “TopStruct” in our example. The optional syn-
tax “[over Loci]” is not used there. If used, it parameterizes the structure
in the same way as modes can be parameterized, i.e. structures can also have
any number of arguments. Finally, the structure defines two Fields:
“carrier” of the type “set”, and
“topology” of the type “Subset-Family of the carrier”.

We will now explain the effects of the Structure-Definition on the construc-
tor level.

Any structure defines a new type constructor. Such constructors are also
called “aggregate types”, and the standard Mizar symbol for them is “l”. So
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the absolute name of the aggregate type in our example is “l1 pre topc”.
Such types behave in exactly the same way as the mode types, i.e. variables
can be reserved for them, Adjective-Clusters can be added to them as a prefix,
etc.

Ancestors become the mother types of the new aggregate type, so in
our example, there is one mother type “1-sorted” (its absolute name is
“l1 struct 0”).

The Fields of a structure give rise to the so called “selector constructors”.
The standard Mizar symbol for selectors is “u”. In our case, the structure
contains two selectors, but the selector “carrier” is inherited from the an-
cestor “1-sorted” (l1 struct 0), where it was defined for the first time. So
its absolute name is “u1 struct 0”. The selector “topology” is defined for
the first time in our example, so its absolute name is “u1 pre topc”.

The meaning of a selector is a function operating on the aggregate type. So
e.g. “carrier” takes arguments of the type “1-sorted” (or any of its spe-
cializations, like TopStruct) and its result type is “set”. The keyword “the”
and “of” apply when using selectors, so e.g. if X is of type “1-sorted”, the
correct Mizar syntax is “the carrier of X” (instead of just e.g. “carrier
X”, which would be the case for normal Mizar functions).

The second selector “topology” takes argument (we denote it X here)
of the type “TopStruct” and its result type is “Subset-Family of the

carrier of X”. In this result type, the selector “carrier” is already used
in the parameter of the mode “Subset-Family”. Such result types (param-
eterized by the “carrier” term) occur quite often for selectors.

Finally, we need something to create the desired structure, when the Fields

are given. This is solved in Mizar by creating “aggregate functor” for the
structure. The standard Mizar symbol for aggregate functors is “g”, so for
TopStruct, its absolute name is “g1 pre topc”. The symbol for the aggre-
gate functor is in Mizar the same as the symbol for the aggregate type, i.e.
TopStruct. Given properly typed arguments, e.g. by following global reser-
vations:
“reserve X for set;”
“reserve Y for Subset-Family of X;”
the Mizar term “TopStruct(#X,Y#)” means applying the aggregate functor
“TopStruct” (“g1 pre topc”) to arguments X and Y, yielding an object of
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the aggregate type “TopStruct” (“l1 pre topc”).
Obviously, it holds then that

“X = the carrier of TopStruct(#X,Y#)” and
“Y = the topology of TopStruct(#X,Y#)”.

Now we will explain, how Structure-Definitions are translated into first-
order syntax.

Aggregate types are translated again as predicates, selectors and aggre-
gate functors are translated as functions. First, we need to translate the
type (ancestor) hierarchy. This is the same as for Mode-Definitions. So in
our example, it is:
“TopStruct(X) implies 1-sorted(X)”, in absolute notation:
“forall([X], implies( l1 pre topc(X), l1 struct 0(X))).”.

Next we need to state the typing theorems for the selectors. This is
the same as typing theorems for normal Mizar functors. So for the selec-
tor “carrier” it was done when translating the definition of the structure
“1-sorted”:
“1-sorted(X) implies set(carrier(X))”,
since “set” pruning applies, no typing theorem was actually created for
“carrier”.

For the selector “topology”, we get:
“TopStruct(X) implies Subset-Family(topology(X),carrier(X))”.
Since Subset-Family (defined in article “setfam 1”) is expandable mode
with quite long expansion, we do not translate it in the following absolute
name translation of the previous formula:

“forall([X], implies( l1 pre topc(X),

Subset-Family(u1 pre topc(X),u1 struct 0(X))))”.

(however, the reader is encouraged to try it as an exercise, using the def-
initions:
“mode Subset-Family of D is Subset of bool D;” and
“mode Subset of X is Element of bool X;”,
where the absolute name of the functor “bool” (power set) is “k1 zfmisc 1”).
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Similarly, we need a typing theorem for the aggregate functor operating
on the Fields:
“(set(X) and Subset-Family(Y,X)) implies TopStruct(TopStruct(X,Y)).”
This looks quite confusing without the absolute notation, so here it is (prun-
ing the “set” and not translating “Subset-Family”):
“forall([X,Y], implies( Subset-Family(Y,X),

l1 pre topc(g1 pre topc(X,Y))))”.

Finally, we need to encode the interdependence of these constructors.
This is done by stating that the structures are freely generated by its Fields,
using the aggregate functor:
“TopStruct(X) implies X = TopStruct(carrier(X),topology(X));”,
in absolute notation:
“forall([X], implies( l1 pre topc(X),

equal(X,g1 pre topc(u1 struct 0(X),u1 pre topc(X)))))”.

3.6 Cluster Registrations

We have already mentioned, that Cluster-Registrations define for the system
the special rules of attribute handling. They either state non emptiness
of attributed types (Existential-Registration) or define attribute propagation
(Conditional-Registration, Functorial-Registration).

3.6.1 Existential-Registration

The syntax of Existential-Registration is:
cluster Adjective-Cluster Type-Expression ; Correctness-Conditions.

Existential-Registrations assert the existence (non emptiness of the exten-
sion) of a type with some Adjective-Cluster prefix.

Example:

definition

cluster cardinal set;

existence

proof ...

end;

end;
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in article card 1 asserts the existence of the type “set” with the Adjective

“cardinal”. Whenever a variable is being reserved for a type with some
non empty Adjective-Cluster, the non emptiness of the type’s extension is
checked by the system.

We already noted how types with Adjective-Cluster are translated, so the
translation is a simple existence formula in such cases:
“exists([X], (cardinal(X) and set(X)))”.
In absolute notation and pruning the “set”:
“exists([X], v1 card 1(X))”.

3.6.2 Conditional-Registration

The syntax of Conditional-Registration is:
cluster Adjective-Cluster -> Adjective-Cluster Type-Expression ; Correctness-

Conditions .

Conditional-Registrations give rules for attribute propagation.

Example:

definition

cluster cardinal -> Ordinal-like set;

coherence

proof ...

end;

end;

from article card 1 states that to any “set” with Adjective-Cluster “cardinal”
the system should add the Adjective-Cluster “Ordinal-like”. A proof of this
must be given after the keyword “coherence”. Conditional-Registrations are
easily translated as implication:
“set(X) and cardinal(X) implies Ordinal-like(X)”.
In absolute syntax and after “set” pruning:
“forall([X], implies( v1 card 1(X), v3 ordinal1(X)))”.

3.6.3 Functorial-Registration

The syntax of Functorial-Registration is:



4 REDEFINITIONS 22

cluster Term-Expression -> Adjective-Cluster ; Correctness-Conditions

Example:

definition let X be finite set;

cluster Card X -> finite;

coherence;

end;

from article card 1 says that for any X with the type “finite set”, the
attribute “finite” applies also to the term “Card X” (the cardinality of X).
While Conditional-Registrations define attribute propagation for some un-
derlying type (“set” in the previous example), Functorial-Registrations do
this for terms (“Card X” here). Their translation is also simple:
“(finite(X) and set(x)) implies finite(Card(X))”.
In absolute syntax and after “set” pruning :
“(forall([X], implies( v1 finset 1(X), v1 finset 1(k1 card 1(X)))))”.

4 Redefinitions

In Mizar, there can be predicate, attribute, type and functor redefinitions.
Apart from the keyword “redefine”, they have the same syntactic structure
as the respective definitions. They can introduce new notation, change the
definitional formula or the result types, or add new properties.

Some redefinitions do not touch the constructor level, they only define
new notation.

Example:

definition let M,N;

redefine pred M c= N;

synonym M <=’ N;

pred M in N;

synonym M <’ N;

end;

are two redefinitions from article card 1. The variables here had previously
been globally declared for the type Cardinal:
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“reserve K,M,N for Cardinal;”

These redefinitions just create new patterns “<=‘” resp. “<‘” operating
on Cardinals. These patterns are from that place on equivalent to the old
patterns “c=” (subset relation) resp. “in”, and they are mapped to the same
constructors as the old patterns.

If the constructor level is touched by the redefinition, Mizar usually creates
a new constructor, but knows to some extent, that it is equivalent to its
redefined counterpart. The treatment in Mizar is not complete, e.g. if several
type redefinitions are possible, only the last defined is chosen, since Mizar
implementation sometimes requires the terms to have unique result types.

This is no serious restriction for Mizar, since Mizar allows explicit typing
(using the “is” keyword) of terms, and their “reconsidering”, e.g.:

reserve A for finite Ordinal;

Lemma1: A is Integer

proof ...

end;

reconsider A as Integer by Lemma1;

Lemma2: A-A=0 by REAL_1:36;

Here, first A is reserved for the type “finite Ordinal”, then it is proved,
that A is also of the type “Integer”. After that, we can retype (“reconsider”)
A as “Integer”, and after that we can already apply the subtraction oper-
ation to A, since this subtraction is defined for reals and “Integer” (unlike
“Ordinal”) is a specialization of the type “Real”.

Since we translate types (and attributes) as predicates, there is no trouble
in having multiple “types” for a term. After the translation, these are simply
several unit clauses holding about the term, e.g.:
“finite(A) and Ordinal(A) and Integer(A) and Real(A)”.

So unlike Mizar, we do not create new constructors for redefinitions, we
just translate the new facts stated by the redefinitions.

For attribute redefinitions, the only thing redefined can be the Definiens,
e.g. for the previously given attribute “limit”, the redefinition could be:
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definition let M;

redefine attr M is limit means

for N <’ M holds nextcard N <’ M;

compatibility

proof ...

end;

end;

After the keyword “compatibility”, a proof must be given, that the new
definition is equivalent to the old one. So the translation of such redefinition
is simply a new equivalence formula:
“limit(X) iff forall([Y], <‘(Y,X) implies <‘(nextcard(Y),X))”.

The situation is almost the same for predicates, but new Predicate-Properties

can be given for them in the redefinition. They are translated exactly as in
normal definitions.

For function and type redefinitions, there can additionally be a change in
the result (mother) type of the redefined constructor. In such cases, we just
add a new type hierarchy translation for the constructor, e.g.:

definition let x be Real;

redefine func -x -> Real;

coherence by ARYTM:def 2;

is a redefinition of the previously mentioned definition of the unary function
“-”. The keyword “coherence” here starts a proof, that the new result type
“Real” is correct (it is proved by reference to definition 2 in article arytm).
The new typing theorem is:
“Real(X) implies Real(k1 real 1(X))”.

5 Unimplemented Features of Mizar

Mizar Schemes and Fraenkel terms are not currently translated, numbers are
translated only in a very simple way.

Mizar Schemes are used to express second-order assertions parameterized
by functor or predicate variables. This makes it possible, to state principles
like Separation or Induction in Mizar, e.g.:
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scheme Separation { A()-> set, P[set] } :

ex X st for x holds x in X iff x in A() & P[x]

proof ...

end;

from article boole states that for any set “A()” and any formula “P” with a
free variable of the type “set”, there is a subset of “A()” of elements with
the property “P”.

Similarly,

scheme Ind { P[Nat] } :

for k holds P[k]

provided

P[0] and

for k st P[k] holds P[k + 1];

from article nat 1 is the usual induction principle for formulas with a free
variable of type “Nat” (natural numbers).

Another feature of Mizar is the Fraenkel (“setof”) operator, which (in
accordance with the Separation principle) creates sets of elements that satisfy
a given formula.

Example:

{i where i is Nat: i < 5}

is the set of natural numbers smaller than 5. The result type of such terms
is the largest type “set”.

Schemes and Fraenkel terms cannot be directly translated into first-order
syntax. These features are relatively rare in MML and their usage is quite
restricted (full instantiation of a scheme must be given before it can be ap-
plied), so a very large part of MML can be translated even if these features
stay unhandled. We think the performance gap between current first order
provers and higher order provers justifies such approach.

Theoretically, the Fraenkel terms and Schemes could be completely re-
moved using the standard set-theoretic elimination procedures (previous work
with Otter in this direction is described in [Belinfante 96]), however, given
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the advanced constructor system in Mizar, this could lead to very large (and
thus practically unusable) expansions.

We believe, that the solution lies rather in modifying the current efficient
first order provers to handle the “real mathematics” (at least to the extent
the Mizar checker handles it today).

This also applies to the Mizar built-in handling of numbers. The current
(most simple) translation creates for each mentioned number a new con-
stant. However, Mizar can evaluate some simple arithmetic expressions like
“(5+3)*4”.

Finally, we should note, that our translation does not go into the Mizar
proofs. Given a Mizar theorem, we simply collect the references that were
used to prove it, and save them hidden behind a dfg comment in the resulting
dfg file, for possible further generation of a first-order reproof task. Since
there are currently more than 35.000 theorems in the MML, we believe this
is sufficient for any serious experiments with reproving.

However, since current first-order provers have already defined simple
proof formats, and proof checkers for such formats are available, translat-
ing Mizar proofs to such formats would have the additional benefit of the
possibility of independent cross-checking of the Mizar checker by other first
order checkers. Additionally, if reproof tasks were generated from the lem-
mas occurring in the Mizar proofs too, their number would rise to hundreds
of thousands.

So since the main job (translating to first-order syntax) is already done,
translating the proofs is probably worth the additional effort and will be done
in the future.

6 Computer Implementation

Is done using the sources of the Mizar system (currently not public, imple-
mented in Delphi, FPC and partially GPC and Kylix), mainly the part which
inserts checked Mizar articles into common Mizar database (Exporter). The
main tool (fo tool) creates a first order database with structure similar to
the normal Mizar database.

Initial support was written for Lisp and Prolog syntax (the Prolog syntax
based on previous work of Czeslaw Bylinsky for the ILF group), the complete
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export is into DFG syntax ( as used e.g. by the SPASS prover). Some
functions for experimenting with the translated database and user interface
where implemented in Emacs Lisp (as part of author’s Mizar mode), some
initial experiments (mainly to check the correctness of the translation) were
conducted with the SPASS prover.

7 Relation to the ILF Project

The probably largest effort at translating the MML to first order syntax was
carried out several years ago by the ILF group [Dahn 97]. MML articles were
exported into a rich Prolog format (using a special program made by Czeslaw
Bylinsky), and this format was further processed by parts of the ILF system
(written mostly in Prolog) with the main result being a block proof format
[Dahn and Wolf 94] of MML articles.

Articles in block proof format were then inserted into a SQL database
(Postgres), together with some other auxiliary data (e.g. bibliographical info,
etc.). Export functions into several first order formats (TPTP, Otter, dfg, ...)
were written for this database. TPTP problems generated in this way from
several articles were included into the TPTP library [Suttner and Sutcliffe 98],
problems in other formats are available on demand from the ILF server.

The relationship of the work described here to the ILF system is following:
The ILF project (unfortunately) stopped some time ago, with the MML part
of it not finished completely and no longer being updated. Finishing and
updating it could still be quite time consuming process, owing to the size
of the ILF codebase and the generic approach taken there (several levels of
translation, using external SQL database).

Since the author’s need was to have quickly a simple tool for complete
and uniform first order translation of the MML, we rather reused parts of the
Mizar codebase (Exporter) together with an updated version of the above
mentioned Prolog export program written by C. Bylinsky. This made it
possible to do the translation in a couple of days, with only minor (mainly
output format) changes to the Mizar codebase. However, this approach is far
less generic than the ILF approach, so the long term goal should probably
be updating or completing of the Mizar-related parts of the ILF system.
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8 Related and Future Work

An important part of the translation are the scripts that generate proving
problems from the translated Mizar database. Such scripts have to mimic the
Mizar theory inclusion mechanism closely, add special axioms for things that
are obvious to the Mizar checker, and possibly try to apply some filtering
to handle large theories. Due to space constraints, we do not describe them
here, they will probably be described in another article about experiments
with theorem provers on the translated database.
Experimenting with theorem provers (currently E and SPASS) is work in
progress at the time of writing this article. The main purpose behind the
translation is to train theorem provers on the large database, and possibly
also implement discovery systems that could make use of it.
The most recent experiments show, that the “well-typing” inferences that
have to be carried out by the provers are much less efficient than the type
system implementation in Mizar. So another work which is currently under
way, is to add an efficient Mizar-like type system to theorem provers. It seems
that implementation of type discipline will be a necessary feature for theorem
provers to be able to handle large theories. For example, the SPASS prover,
which implements Mizar types to some extent, seems to perform much better
in advanced theories, than the heavily optimized recent CASC winners.
As already noted, another feature, that will eventually have to be added to
theorem provers to handle theories based on ZFC (i.e. most of current math-
ematics), is efficient implementation of infinite schemes of first-order axioms.
In accordance with e.g. [?] we also believe, that theorem provers should be
able to handle numbers efficiently.
We think a good way to boost the development of all these features for cur-
rent theorem provers, would be to have e.g. a special part of CASC devoted
to proving in large structured theory ensembles like MML. Detailed rules of
such competition concerning e.g. allowed machine learning or type transla-
tion methods would have to be thought up.
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Article

Mizar-Article =

"environ"

Environment-Declaration
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"begin"

Text-Proper .

Environment

Environment-Declaration = { Directive } .

Directive =

Vocabulary-Directive |

Library-Directive |

Requirement-Directive .

Vocabulary-Directive =

"vocabulary" Vocabulary-Name { "," Vocabulary-Name } ";" .

Vocabulary-Name = File-Name .

Library-Directive =

( "notation" |

"constructors" |

"clusters" |

"definitions" |

"theorems" |

"schemes" ) Article-Name { "," Article-Name } ";" .

Article-Name = File-Name .

Requirement-Directive = "requirements" Requirement { "," Requirement } ";" .

Requirement = File-Name .

Text Proper

Text-Proper =

{ Text-Item }

{ Section } .
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Section =

"begin"

{ Text-Item } .

Text-Item =

Reservation |

Definitional-Item |

Structure-Definition |

Theorem |

Scheme |

Auxiliary-Item |

Canceled-Theorem .

Reservation = "reserve" Reservation-Segment { "," Reservation-Segment

} ";" .

Reservation-Segment = Reserved-Identifiers "for" Type-Expression .

Reserved-Identifiers = Identifier { "," Identifier } .

Definitional-Item = Definitional-Block ";" .

Definitional-Block =

"definition"

{ Definition-Item | Definition }

[ "redefine"

{ Definition-Item | Definition } ]

"end" .

Definition-Item = Loci-Declaration | Permissive-Assumption |

Auxiliary-Item .

Loci-Declaration = "let" Qualified-Variables [ "such" Conditions ] ";" .

Permissive-Assumption = Assumption .

Definition =
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Structure-Definition |

Mode-Definition |

Functor-Definition |

Predicate-Definition |

Attribute-Definition |

Canceled-Definition |

Cluster-Registration .

Structure-Definition =

"struct" [ "(" Ancestors ")" ] Structure-Symbol [ "over" Loci ]

"(#" Fields "#)" ";" .

Ancestors = Type-Expression { "," Type-Expression } .

Structure-Symbol = Symbol .

Loci = Locus { "," Locus } .

Fields = Field-Segment { "," Field-Segment } .

Locus = Variable-Identifier .

Variable-Identifier = Identifier .

Field-Segment = Selector-Symbol { "," Selector-Symbol } Specification .

Selector-Symbol = Symbol .

Specification = "->" Type-Expression .

Mode-Definition =

"mode" Mode-Pattern ( [ Specification ] [ "means" Definiens ] ";"

Correctness-Conditions | "is" Type-Expression ";" )

{ Mode-Synonym } .

Mode-Pattern = Mode-Symbol [ "of" Loci ] .

Mode-Symbol = Symbol .
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Mode-Synonym = "synonym" Mode-Pattern ";" .

Definiens = Simple-Definiens | Conditional-Definiens .

Simple-Definiens =

[ ":" Label-Identifier ":" ] ( Sentence | Term-Expression ) .

Label-Identifier = Identifier .

Conditional-Definiens =

[ ":" Label-Identifier ":" ] Partial-Definiens-List

[ "otherwise" ( Sentence | Term-Expression ) ] .

Partial-Definiens-List = Partial-Definiens { "," Partial-Definiens } .

Partial-Definiens = ( Sentence | Term-Expression ) "if" Sentence .

Functor-Definition =

"func" Functor-Pattern [ Specification ] [ ( "means" | "equals" )

Definiens ] ";"

Correctness-Conditions

{ Functor-Property }

{ Functor-Synonym } .

Functor-Pattern =

[ Functor-Loci ] Functor-Symbol [ Functor-Loci ] |

Left-Functor-Bracket Loci Right-Functor-Bracket .

Functor-Property = "commutativity" Justification ";" .

Functor-Synonym = "synonym" Functor-Pattern ";" .

Functor-Loci = Locus | "(" Loci ")" .

Functor-Symbol = Symbol .

Left-Functor-Bracket = Symbol .
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Right-Functor-Bracket = Symbol .

Predicate-Definition =

"pred" Predicate-Pattern [ "means" Definiens ] ";"

Correctness-Conditions

{ Predicate-Property }

{ Predicate-Synonym } .

Predicate-Pattern = [ Loci ] Predicate-Symbol [ Loci ] .

Predicate-Property =

"symmetry" Justification ";" |

"connectedness" Justification ";" |

"reflexivity" Justification ";" |

"irreflexivity" Justification ";" .

Predicate-Synonym = ( "synonym" | "antonym" ) Predicate-Pattern ";" .

Predicate-Symbol = Symbol .

Attribute-Definition =

"attr" Attribute-Pattern "means" Definiens ";"

[ Correctness-Condition ]

{ Attribute-Synonym } .

Attribute-Pattern = Locus "is" Attribute-Symbol .

Attribute-Synonym =

( "synonym" | "antonym" ) ( Attribute-Pattern | Predicate-Pattern ) ";" .

Attribute-Symbol = Symbol .

Canceled-Definition = "canceled" [ Numeral ] ";" .

Cluster-Registration =

Existential-Registration |

Conditional-Registration |
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Functorial-Registration .

Existential-Registration =

"cluster" Adjective-Cluster Type-Expression ";"

Correctness-Conditions .

Adjective-Cluster = { Adjective } .

Adjective = [ "non" ] Attribute-Symbol .

Conditional-Registration =

"cluster" Adjective-Cluster "->" Adjective-Cluster Type-Expression ";"

Correctness-Conditions .

Functorial-Registration =

"cluster" Term-Expression "->" Adjective-Cluster ";"

Correctness-Conditions .

Correctness-Conditions =

{ Correctness-Condition }

[ "correctness" Justification ";" ] .

Correctness-Condition =

"existence" Justification ";" |

"uniqueness" Justification ";" |

"coherence" Justification ";" |

"compatibility" Justification ";" |

"consistency" Justification ";" .

Theorem = "theorem" Compact-Statement .

Scheme =

[ "scheme" ] Scheme-Identifier "{" Scheme-Parameters "}" ":"

Scheme-Conclusion

[ "provided"

Scheme-Premise

{ "and" Scheme-Premise } ]

Justification ";" .
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Scheme-Identifier = Identifier .

Scheme-Parameters = Scheme-Segment { "," Scheme-Segment } .

Scheme-Conclusion = Sentence .

Scheme-Premise = Proposition .

Scheme-Segment = Predicate-Segment | Functor-Segment .

Predicate-Segment =

Predicate-Identifier { "," Predicate-Identifier } "["

Type-Expression-List "]" .

Predicate-Identifier = Identifier .

Functor-Segment =

Functor-Identifier { "," Functor-Identifier } "(" [

Type-Expression-List ] ")" Specification .

Functor-Identifier = Identifier .

Auxiliary-Item = [ "then" ] Statement | Private-Definition .

Canceled-Theorem = "canceled" [ Numeral ] ";" .

Private-Definition =

Constant-Definition |

Private-Functor-Definition |

Private-Predicate-Definition .

Constant-Definition = "set" Equating-List ";" .

Equating-List = Equating { "," Equating } .

Equating = Variable-Identifier "=" Term-Expression .
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Private-Functor-Definition =

"deffunc" Private-Functor-Pattern "=" Term-Expression .

Private-Predicate-Definition =

"defpred" Private-Predicate-Pattern "means" Sentence .

Private-Functor-Pattern = Functor-Identifier "(" [

Type-Expression-List ] ")" .

Private-Predicate-Pattern =

Predicate-Identifier "[" [ Type-Expression-List ] "]" .

Reasoning =

{ Reasoning-Item }

[ "per" "cases" Simple-Justification ";"

( Case-List | Suppose-List ) ] .

Case-List = Case { Case } .

Case =

"case" ( Proposition | Conditions ) ";"

{ Reasoning-Item } .

Suppose-List = Suppose { Suppose } .

Suppose =

"suppose" ( Proposition | Conditions ) ";"

{ Reasoning-Item } .

Reasoning-Item = Auxiliary-Item | Skeleton-Item .

Skeleton-Item = Generalization | Assumption | Conclusion |

Exemplification .

Generalization = "let" Qualified-Variables [ "such" Conditions ] ";" .

Assumption =

Single-Assumption | Collective-Assumption | Existential-Assumption .
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Single-Assumption = "assume" Proposition ";" .

Collective-Assumption = "assume" Conditions ";" .

Existential-Assumption =

"given" Qualified-Variables [ "such" Conditions ] ";" .

Conclusion = ( "thus" | "hence" ) Statement .

Exemplification = "take" Example { "," Example } ";" .

Example = Term-Expression | Variable-Identifier "=" Term-Expression .

Statement = [ "then" ] Linkable-Statement | Diffuse-Statement .

Linkable-Statement =

Compact-Statement |

Choice-Statement |

Type-Changing-Statement |

Iterative-Equality .

Compact-Statement = Proposition Justification ";" .

Choice-Statement =

"consider" Qualified-Variables [ "such" Conditions ]

Simple-Justification ";" .

Type-Changing-Statement =

"reconsider" Type-Change-List "as" Type-Expression

Simple-Justification ";" .

Type-Change-List =

( Equating | Variable-Identifier ) { "," ( Equating |

Variable-Identifier ) } .

Iterative-Equality =

Term-Expression "=" Term-Expression Simple-Justification
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".=" Term-Expression Simple-Justification

{ ".=" Term-Expression Simple-Justification } ";" .

Diffuse-Statement =

[ Label-Identifier ":" ]

"now"

Reasoning

"end" ";" .

Justification = Simple-Justification | Proof .

Simple-Justification = Straightforward-Justification | Scheme-Justification .

Proof =

( "proof" | "@proof" )

Reasoning

"end" .

Straightforward-Justification = [ "by" References ] .

Scheme-Justification = "from" Scheme-Identifier [ "(" References ")" ] .

References = Reference { "," Reference } .

Reference = Local-Reference | Library-Reference .

Local-Reference = Label-Identifier .

Library-Reference =

Article-Name ":" ( Theorem-Number | "def" Definition-Number )

{ "," ( Theorem-Number | "def" Definition-Number ) } .

Theorem-Number = Numeral .

Definition-Number = Numeral .

Conditions = "that" Proposition { "and" Proposition } .
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Proposition = [ Label-Identifier ":" ] Sentence .

Sentence = Formula-Expression .

Expressions

Formula-Expression =

"(" Formula-Expression ")" |

Atomic-Formula-Expression |

Quantified-Formula-Expression |

Formula-Expression "&" Formula-Expression |

Formula-Expression "or" Formula-Expression |

Formula-Expression "implies" Formula-Expression |

Formula-Expression "iff" Formula-Expression |

"not" Formula-Expression |

"contradiction" |

"thesis" .

Atomic-Formula-Expression =

[ Term-Expression-List ] Predicate-Symbol [ Term-Expression-List ] |

Predicate-Identifier [ "[" Term-Expression-List "]" ] |

Term-Expression "is" { Adjective } |

Term-Expression "is" Type-Expression .

Quantified-Formula-Expression =

"for" Qualified-Variables [ "st" Formula-Expression ]

( "holds" Formula-Expression | Quantified-Formula-Expression ) |

"ex" Qualified-Variables "st" Formula-Expression .

Qualified-Variables =

Implicitly-Qualified-Variables |

Explicitly-Qualified-Variables |

Explicitly-Qualified-Variables "," Implicitly-Qualified-Variables .

Implicitly-Qualified-Variables = Variables .
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Explicitly-Qualified-Variables = Qualified-Segment { "," Qualified-Segment } .

Qualified-Segment = Variables Qualification .

Variables = Variable-Identifier { "," Variable-Identifier } .

Qualification = ( "being" | "be" ) Type-Expression .

Type-Expression = "(" Type-Expression ")" | Adjective-Cluster Radix-Type .

Radix-Type =

Mode-Symbol [ "of" Term-Expression-List ] |

Structure-Symbol [ "over" Term-Expression-List ] .

Type-Expression-List = Type-Expression { "," Type-Expression } .

Term-Expression =

"(" Term-Expression ")" |

[ Arguments ] Functor-Symbol [ Arguments ] |

Left-Functor-Bracket Term-Expression-List Right-Functor-Bracket |

Functor-Identifier "(" [ Term-Expression-List ] ")" |

Structure-Symbol "(#" Term-Expression-List "#)" |

Variable-Identifier |

"{" Term-Expression [ Postqualification ] ":" Sentence "}" |

Numeral |

Term-Expression "qua" Type-Expression |

"the" Selector-Symbol "of" Term-Expression |

"the" Selector-Symbol |

Private-Definition-Parameter |

"it" .

Arguments = Term-Expression | "(" Term-Expression-List ")" .

Term-Expression-List = Term-Expression { "," Term-Expression } .

Postqualification =

"where" Postqualifying-Segment { "," Postqualifying-Segment } .
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Postqualifying-Segment =

Postqualified-Variable { "," Postqualified-Variable } "is"

Type-Expression .

Postqualified-Variable = Identifier .

Private-Definition-Parameter =

"$1" | "$2" | "$3" | "$4" | "$5" | "$6" | "$7" | "$8" .



Appendix 1 - Example of the translation and

reproving methods

In this appendix we show the complete process of translating and reproving
a selected Mizar theorem. All the generated files mentioned here are also
present in the example directory on the enclosed CD, the corresponding Mizar
files are in the mizar directory there.

Our example is the theorem 42 in article CARD 1 (CARD 1:42) - injec-
tivity of the function alef:

reserve A,B for Ordinal;

theorem :: CARD_1:42

alef A = alef B implies A = B;

The function alef is in MML defined as follows ( T-Sequence stands for
transfinite sequence here, i.e. a function whose domain is an Ordinal):

reserve A,B for Ordinal;

reserve L,L1 for T-Sequence;

definition let A;

func alef A -> set means

:: CARD_1:def 8

ex L st it = last L & dom L = succ A & L.{} = Card NAT &

(for B,y st succ B in succ A & y = L.B holds

L.succ B = nextcard union { y }) &

for B,L1 st B in succ A & B <> {} & B is_limit_ordinal & L1 = L|B

holds L.B = Card sup L1;

end;

Mizar proof of CARD 1:42 uses MML theorems ORDINAL1:24 and CARD 1:41
(the predicate <‘ is the strict ordering of ordinals, and in Mizar it is a syn-
onym for the perdicate in).

reserve A,B for Ordinal;

theorem :: ORDINAL1:24

A in B or A = B or B in A;

theorem :: CARD_1:41

A in B iff alef A <‘ alef B;

1



The Mizar proof is as follows:

theorem

Th42: alef A = alef B implies A = B

proof assume

A1: alef A = alef B;

A2: now assume A in B; then

alef A <‘ alef B by Th41;

hence contradiction by A1;

end;

now assume B in A; then

alef B <‘ alef A by Th41;

hence contradiction by A1;

end;

hence thesis by A2,ORDINAL1:24;

end;

The proof uses two lemmas, introduced by the now assume A in B; and
now assume B in A; reasoning items. Both lemmas just show, that their
assumptions lead to contradiction, i.e. neither of them can be true, and hence
we can prove the thesis that A = B using the disjunction ORDINAL1:24.
Note that in both lemmas, the contradiction in Mizar is inferred from the
fact, that alef A = alef B and alef B <‘ alef A (or its opposite) cannot
be simultaneously true. This rule is built-in in Mizar for a more general case,
i.e. the predicate in (for which <‘ is just a synonym) is known to be irreflexive
to the Mizar checker.

Following is the reproval problem of CARD 1:42 generated for SPASS
with the default signature filtering. For better understanding, its back-
translation from the constructor format to the Mizar user symbols is shown
next to it.

begin_problem(t42_card_1).

list_of_descriptions.

name({*t42_card_1*}).

author({*Mizar Mathematical Library*}).

status(unsatisfiable).

description({*Problem generated from MML by MPTP*}).

end_of_list.
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list_of_symbols.

functions[

% Article functors:

(k3_card_1,1),

% Numerals’ arities:

% Constants’ arities:

% Scheme functors:

(setof,0)

].

predicates[

% Scheme predicates:

% Article predicates:

(v1_card_1,1), (v3_ordinal1,1),

(r2_hidden,2), (v2_ordinal1,1),

(v1_ordinal1,1)

].

end_of_list.

list_of_formulae(axioms).

% Constructor types:

% Mode existence:

% Constructor properties:

formula(

forall([B1,B2],

not(

and( r2_hidden(B1,B2),

r2_hidden(B2,B1)))),

p8_r2_hidden).

% Existential clusters:

% Functor clusters:

formula(forall([A1],

implies(

v3_ordinal1(A1),

and( v1_ordinal1(k3_card_1(A1)),

and( v2_ordinal1(k3_card_1(A1)),

and( v3_ordinal1(k3_card_1(A1)),

v1_card_1(k3_card_1(A1))))))),

fc0_card_1).

list_of_symbols.

functions[

% Article functors:

(alef,1),

% Numerals’ arities:

% Constants’ arities:

% Scheme functors:

(setof,0)

].

predicates[

% Scheme predicates:

% Article predicates:

(cardinal,1), (ordinal,1),

(in,2), (epsilon-connected,1),

(epsilon-transitive,1)

].

end_of_list.

list_of_formulae(axioms).

% Constructor types:

% Mode existence:

% Constructor properties:

formula(

forall([B1,B2],

not(

and( in(B1,B2),

in(B2,B1)))),

p8_r2_hidden).

% Existential clusters:

% Functor clusters:

formula(forall([A1],

implies(

ordinal(A1),

and( epsilon-transitive(alef(A1)),

and( epsilon-connected(alef(A1)),

and( ordinal(alef(A1)),

cardinal(alef(A1))))))),

fc0_card_1).
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% Conditional clusters:

formula(forall([A1],

implies(

v3_ordinal1(A1),

and( v1_ordinal1(A1),

v2_ordinal1(A1)))),

cc0_ordinal1).

formula(forall([A1],

implies(

v1_card_1(A1),

and( v1_ordinal1(A1),

and( v2_ordinal1(A1),

v3_ordinal1(A1))))),

cc0_card_1).

formula(forall([A1],

implies(

and( v1_ordinal1(A1),

v2_ordinal1(A1)),

v3_ordinal1(A1))),

cc1_ordinal1).

% Requirements:

% Special non-DB formulas:

% Direct references:

formula(

forall([B1,B2],

implies(

and( v3_ordinal1(B1),

v3_ordinal1(B2)),

and(

not(

and( r2_hidden(B1,B2),

not( r2_hidden(k3_card_1(B1),

, k3_card_1(B2))))),

not(

and( r2_hidden(k3_card_1(B1),

k3_card_1(B2)),

not( r2_hidden(B1,B2))))))),

t41_card_1).

% Conditional clusters:

formula(forall([A1],

implies(

ordinal(A1),

and( epsilon-transitive(A1),

epsilon-connected(A1)))),

cc0_ordinal1).

formula(forall([A1],

implies(

cardinal(A1),

and( epsilon-transitive(A1),

and( epsilon-connected(A1),

ordinal(A1))))),

cc0_card_1).

formula(forall([A1],

implies(

and( epsilon-transitive(A1),

epsilon-connected(A1)),

ordinal(A1))),

cc1_ordinal1).

% Requirements:

% Special non-DB formulas:

% Direct references:

formula(

forall([B1,B2],

implies(

and( ordinal(B1),

ordinal(B2)),

and(

not(

and( in(B1,B2),

not( in(alef(B1),

alef(B2))))),

not(

and( in(alef(B1),

alef(B2)),

not( in(B1,B2))))))),

t41_card_1).
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formula(

forall([B1,B2],

implies(

and( v3_ordinal1(B1),

v3_ordinal1(B2)),

not(

and(

not( r2_hidden(B1,B2))

,and(

not( equal(B1,B2)),

not( r2_hidden(B2,B1))))))),

t24_ordinal1).

end_of_list.

list_of_formulae(conjectures).

formula(

forall([B1,B2],

implies(

and( v3_ordinal1(B1),

v3_ordinal1(B2)),

not(

and( equal(k3_card_1(B1),

k3_card_1(B2)),

not( equal(B1,B2)))))),

t42_card_1).

end_of_list.

end_problem.

formula(

forall([B1,B2],

implies(

and( ordinal(B1),

ordinal(B2)),

not(

and(

not( in(B1,B2))

,and(

not( equal(B1,B2)),

not( in(B2,B1))))))),

t24_ordinal1).

end_of_list.

list_of_formulae(conjectures).

formula(

forall([B1,B2],

implies(

and( ordinal(B1),

ordinal(B2)),

not(

and( equal(alef(B1),

alef(B2)),

not( equal(B1,B2)))))),

t42_card_1).

end_of_list.

end_problem.

5



Note that in addition to the direct references t24 ordinal1, t41 card 1

and the conjecture t42 card 1 the signature filtering had allowed only five
additional background formulas:

• p8 r2 hidden - asymmetry of the predicate in

• fc0 card 1 - functor cluster adding attribute cardinal to the term
alef(A)

• cc0 card 1, cc0 ordinal1, cc1 ordinal1 - conditional clusters re-
lating the attributes cardinal, epsilon-transitive, epsilon-connected,

ordinal.

This problem was very easy for the SPASS prover, following is the proof
found by SPASS, back-transformed for better readability to the user symbols.
The statistics says, that only 62 clauses were derived in the standard given-
clause theorem proving loop used by SPASS, until the proof was found.

SPASS V 2.1

SPASS beiseite: Proof found.

Problem: /home/urbanj/shared/MPTP/PROBLEMS/card_1/t42_card_1.dfg

SPASS derived 62 clauses, backtracked 0 clauses and kept 54 clauses.

SPASS allocated 616 KBytes.

SPASS spent 0:00:00.05 on the problem.

0:00:00.02 for the input.

0:00:00.01 for the FLOTTER CNF translation.

0:00:00.00 for inferences.

0:00:00.00 for the backtracking.

0:00:00.01 for the reduction.

Here is a proof with depth 4, length 26 :

1[0:Inp] || -> ordinal(skc3)*.

2[0:Inp] || -> ordinal(skc2)*.

3[0:Inp] || equal(skc3,skc2)** -> .

7[0:Inp] ordinal(U) || -> epsilon-connected(U)*.

8[0:Inp] ordinal(U) || -> epsilon-transitive(U)*.

9[0:Inp] || -> equal(alef(skc3),alef(skc2))**.

15[0:Inp] || in(U,V)*+ in(V,U)* -> .

16[0:Inp] ordinal(U) ordinal(V) || -> in(U,V)* equal(U,V) in(V,U)*.

17[0:Inp] ordinal(U) ordinal(V) || in(U,V) -> in(alef(U),alef(V))*.
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20[0:Res:2.0,17.0] ordinal(U) || in(U,skc2) -> in(alef(U),alef(skc2))*.

26[0:Res:2.0,7.0] || -> epsilon-connected(skc2)*.

27[0:Res:2.0,8.0] || -> epsilon-transitive(skc2)*.

29[0:Res:2.0,17.1] ordinal(U) || in(skc2,U) -> in(alef(skc2),alef(U))*.

38[0:Res:1.0,7.0] || -> epsilon-connected(skc3)*.

39[0:Res:1.0,8.0] || -> epsilon-transitive(skc3)*.

84[0:SpR:9.0,29.2] ordinal(skc3) || in(skc2,skc3)

-> in(alef(skc2),alef(skc2))*.

86[0:SSi:84.0,1.0,38.0,39.0] || in(skc2,skc3)

-> in(alef(skc2),alef(skc2))*.

87[0:Res:86.1,15.0] || in(skc2,skc3) in(alef(skc2),alef(skc2))* -> .

88[0:MRR:87.1,86.1] || in(skc2,skc3)* -> .

117[0:SpR:9.0,20.2] ordinal(skc3) || in(skc3,skc2)

-> in(alef(skc2),alef(skc2))*.

120[0:SSi:117.0,1.0,38.0,39.0] || in(skc3,skc2)

-> in(alef(skc2),alef(skc2))*.

121[0:Res:120.1,15.0] || in(skc3,skc2) in(alef(skc2),alef(skc2))* -> .

123[0:MRR:121.1,120.1] || in(skc3,skc2)* -> .

125[0:Res:16.2,123.0] ordinal(skc3) ordinal(skc2) ||

-> equal(skc3,skc2) in(skc2,skc3)*.

127[0:SSi:125.1,125.0,2.0,26.0,27.0,1.0,38.0,39.0]

|| -> equal(skc3,skc2) in(skc2,skc3)*.

128[0:MRR:127.0,127.1,3.0,88.0] || -> .

Formulae used in the proof : t42_card_1 cc0_ordinal1 p8_r2_hidden

t24_ordinal1 t41_card_1

It is natural that the SPASS proof is less human-readable than the Mizar
proof, we will try to explain it a bit. SPASS tries to prove the conjecture
from the supplied axioms by negating it, skolemizing and clausifying such
input set of formulas, and looking for the contradiction in the resulting set
of input clauses. The proof starts with input clauses (annotated by the [Inp]
token) used in the proof (clauses 1,2,3,7,8,9,15,16,17) and ends by printing
the formulas from which these clauses were generated (formulas t42 card 1,

cc0 ordinal1, p8 r2 hidden, t24 ordinal1, t41 card 1). The clauses
are printed in a sorted sequent format, which generally has the following
form:

(1) Si || Aj -> Ck

In this format, Si and Aj are all negative literals of the clause, and Ck are all
its positive literals. SPASS employs special efficient sort inference mechanism
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for suitable monadic predicates, which is the reason for distinguishing the
sort literals Si in the clauses from other negative literals Aj. However the
semantics of (1) is the same as of:

(2) || Si , Aj -> Ck

which is just

¬S1 ∨ ... ∨ ¬SnS
∨ ¬A1 ∨ ... ∨ ¬AnA

∨ C1 ∨ ... ∨ CnC

The constants skc2, skc3 are the skolem constants created during skolem-
ization of the negated conjecture t42 card 1. Before the clausification, it
would look this way, and it produces the input clauses 1, 2, 3 and 9:

and(

and( ordinal(skc3),

ordinal(skc2)),

and( equal(alef(skc3),alef(skc2)),

not( equal(skc3,skc2))))

This SPASS proof in fact proceeds similarly to the Mizar proof. It derives
the lemmas

88 || in(skc2,skc3)* -> .

123 || in(skc3,skc2)* -> .

which together with the assumption

3[0:Inp] || equal(skc3,skc2)** -> .

and the translated theorem ORDINAL1:24

16[0:Inp] ordinal(U) ordinal(V) || -> in(U,V)* equal(U,V) in(V,U)*.

yield the contradiction. The lemmas 88 and 123 are derived using the trans-
lated theorem CARD 1:41 (clause 17), the asymmetry of in (clause 15) and
also the assumption 3. The conditional cluster cc0 ordinal1 is actually a bit
redundant part of the SPASS proof and its usage is reported only because
it was used for the sort inferences yielding the clauses 120 and 127, which
could be replaced by standard resolution.
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We also show the SPASS proof for the corresponding unfiltered problem
here. The full input is not shown here because of its length (178 formu-
las), it is however available on the enclosed CD (also with the version back-
transformed to the user symbols).

SPASS V 2.1

SPASS beiseite: Proof found.

Problem: /home/urbanj/MPTP/PROBLEMS/card_1/t42_card_1.dfg

SPASS derived 610 clauses, backtracked 64 clauses and kept 578 clauses.

SPASS allocated 959 KBytes.

SPASS spent 0:00:00.40 on the problem.

0:00:00.03 for the input.

0:00:00.06 for the FLOTTER CNF translation.

0:00:00.02 for inferences.

0:00:00.00 for the backtracking.

0:00:00.12 for the reduction.

Here is a proof with depth 3, length 27 :

54[0:Inp] || -> ordinal(skc15)*.

55[0:Inp] || -> ordinal(skc14)*.

101[0:Inp] || equal(skc15,skc14)** -> .

131[0:Inp] || -> equal(alef(skc15),alef(skc14))**.

201[0:Inp] || in(U,V)*+ in(V,U)* -> .

262[0:Inp] ordinal(U) ordinal(V) || -> in(U,V)* equal(U,V) in(V,U)*.

263[0:Inp] ordinal(U) ordinal(V) || in(U,V) -> in(alef(U),alef(V))*.

264[0:Inp] ordinal(U) ordinal(V) || in(alef(U),alef(V))* -> in(U,V).

323[0:Res:54.0,263.0] ordinal(U) || in(U,skc15)

-> in(alef(U),alef(skc15))*.

344[0:Res:54.0,263.1] ordinal(U) || in(skc15,U)

-> in(alef(skc15),alef(U))*.

345[0:Res:54.0,264.1] ordinal(U) || in(alef(skc15),alef(U))*

-> in(skc15,U).

350[0:Res:262.3,101.0] ordinal(skc14) ordinal(skc15) ||

-> in(skc14,skc15) in(skc15,skc14)*.

358[0:Rew:131.0,323.2] ordinal(U) || in(U,skc15)

-> in(alef(U),alef(skc14))*.

360[0:Rew:131.0,344.2] ordinal(U) || in(skc15,U)

-> in(alef(skc14),alef(U))*.

361[0:Rew:131.0,345.1] ordinal(U) || in(alef(skc14),alef(U))*
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-> in(skc15,U).

362[0:MRR:350.0,350.1,55.0,54.0] || -> in(skc15,skc14)* in(skc14,skc15).

363[0:Res:55.0,361.0] || in(alef(skc14),alef(skc14))* -> in(skc15,skc14).

364[0:Res:55.0,360.0] || in(skc15,skc14) -> in(alef(skc14),alef(skc14))*.

366[0:Res:55.0,358.0] || in(skc14,skc15) -> in(alef(skc14),alef(skc14))*.

437[1:Spt:362.0] || -> in(skc15,skc14)*.

438[1:MRR:364.0,437.0] || -> in(alef(skc14),alef(skc14))*.

936[1:Res:438.0,201.0] || in(alef(skc14),alef(skc14))* -> .

941[1:MRR:936.0,438.0] || -> .

942[1:Spt:941.0,362.0,437.0] || in(skc15,skc14)* -> .

943[1:Spt:941.0,362.1] || -> in(skc14,skc15)*.

944[1:MRR:363.1,942.0] || in(alef(skc14),alef(skc14))* -> .

945[1:MRR:366.0,366.1,943.0,944.0] || -> .

Formulae used in the proof : t42_card_1 p8_r2_hidden t24_ordinal1

t41_card_1

This proof is very similar to the previous one. It differs in the number
of clauses derived and in not using the conditional cluster cc0 ordinal1.
Because of the much higher number of input formulas, the search space has
been much larger - 610 clauses were derived before the proof was found.
This probably also caused that the order of inferencing was a bit different,
and instead of the sort inference using cc0 ordinal1, standard resolution
was used. Another minor difference is that the disjunction 362 was derived
early, and used for the splitting rule implemented in SPASS. The clauses
437 and 942 are the cases introduced by this splitting, and for each of them
contradiction is derived (clauses 941 and 945).

Finally we show the data generated in the fully automated proof attempted
by the combined Mizar Proof Advisor/ SPASS architecture. The 30 hints
(in the order of their expected importance) suggested for CARD 1:42 by the
Mizar Proof Advisor trained on the previous MML proofs were following:

t39_card_1,t40_card_1,t41_card_1,t27_ordinal2,t41_ordinal1,

t24_ordinal1,t34_ordinal1,t35_ordinal2,t21_ordinal1,t19_ordinal1,

d2_ordinal1,d8_xboole_0,t32_card_1,t31_zfmisc_1,d5_card_1,

t27_card_1,d5_funct_1,t23_ordinal1,t52_ordinal2,t44_ordinal2,

t55_ordinal2,t56_ordinal2,t10_ordinal1,t45_ordinal2,t2_xboole_1,

t26_ordinal1,t22_ordinal1,t27_ordinal3,t33_ordinal1,t7_ordinal1
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To these hints (and t42 card 1) background formulas were added, and
the default signature filtering was applied, yielding 92 input formulas. This
file is also too long to be included here, so readers are again advised to browse
it on the enclosed CD. Note that in this case, all the references necessary
for the Mizar proof are present among the first six hints belonging to only
three Mizar articles, so if we stopped at that number of hints, both the
number of direct references and the number of background formulas would
be significantly lower.

Following is the proof of CARD 1:42 found by SPASS using the hints
suggested by the Mizar Proof Advisor:

SPASS V 2.1

SPASS beiseite: Proof found.

Problem: /home/urbanj/MPTP/PROBLEMS/card_1/t42_card_1.dfg

SPASS derived 9289 clauses, backtracked 1260 clauses and kept 3396 clauses.

SPASS allocated 4289 KBytes.

SPASS spent 0:00:07.22 on the problem.

0:00:00.05 for the input.

0:00:00.10 for the FLOTTER CNF translation.

0:00:00.37 for inferences.

0:00:00.17 for the backtracking.

0:00:04.58 for the reduction.

Here is a proof with depth 3, length 29 :

15[0:Inp] || -> ordinal(skc3)*.

16[0:Inp] || -> ordinal(skc2)*.

31[0:Inp] || -> in(U,succ(U))*.

43[0:Inp] || equal(skc3,skc2)** -> .

57[0:Inp] || -> equal(alef(skc3),alef(skc2))**.

106[0:Inp] || in(U,V)* c=(V,U) -> .

118[0:Inp] ordinal(U) || in(V,U)* -> ordinal(V).

159[0:Inp] ordinal(U) ordinal(V) || in(V,U) -> c=(succ(V),U)*.

168[0:Inp] ordinal(U) ordinal(V) || -> in(U,V)* equal(U,V) in(V,U)*.

169[0:Inp] ordinal(U) ordinal(V) || in(V,U) -> in(alef(V),alef(U))*.

170[0:Inp] ordinal(U) ordinal(V) || in(alef(U),alef(V))* -> in(U,V).

205[0:MRR:159.1,118.2] ordinal(U) || in(V,U) -> c=(succ(V),U)*.

206[0:MRR:169.1,118.2] ordinal(U) || in(V,U) -> in(alef(V),alef(U))*.

226[0:Res:16.0,206.0] || in(U,skc2) -> in(alef(U),alef(skc2))*.

229[0:Res:16.0,205.0] || in(U,skc2) -> c=(succ(U),skc2)*.
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276[0:Res:16.0,170.1] ordinal(U) || in(alef(skc2),alef(U))*

-> in(skc2,U).

300[0:Res:15.0,206.0] || in(U,skc3) -> in(alef(U),alef(skc3))*.

360[0:Res:168.3,43.0] ordinal(skc2) ordinal(skc3) ||

-> in(skc2,skc3) in(skc3,skc2)*.

389[0:Rew:57.0,300.1] || in(U,skc3) -> in(alef(U),alef(skc2))*.

397[0:MRR:360.0,360.1,16.0,15.0] || -> in(skc3,skc2)* in(skc2,skc3).

416[0:Res:16.0,276.0] || in(alef(skc2),alef(skc2))* -> in(skc2,skc2).

1545[0:Res:31.0,106.0] || c=(succ(U),U)* -> .

6766[0:Res:229.1,1545.0] || in(skc2,skc2)* -> .

7813[0:MRR:416.1,6766.0] || in(alef(skc2),alef(skc2))* -> .

10409[0:Res:389.1,7813.0] || in(skc2,skc3)* -> .

10759[0:SpR:57.0,226.1] || in(skc3,skc2) -> in(alef(skc2),alef(skc2))*.

10780[0:MRR:397.1,10409.0] || -> in(skc3,skc2)*.

10786[0:MRR:10759.1,7813.0] || in(skc3,skc2)* -> .

10787[0:MRR:10786.0,10780.0] || -> .

Formulae used in the proof : t42_card_1 t10_ordinal1 t7_ordinal1

t23_ordinal1 t33_ordinal1 t24_ordinal1 t41_card_1

This problem was significantly harder for SPASS than the previous two
reproval problems, 9289 clauses were generated before the proof was found.
The proof is also a bit different from the previous two proofs, and though
it is of little interest in this particular case, our combined architecture has
thus really automatically produced a new proof in a nontrivial mathematical
domain. From this point of view we can see that giving SPASS thirty hints
instead of just the first six increases the chance of finding a new proof, which is
probably going to be “less obvious” or perhaps sometimes “more innovative”
than the most apparent solution coming from the strongest hints supplied by
the bayesian memory of the Mizar Proof Advisor.
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Appendix 2 - Structure of the database of re-

sults for MPTP

USE mptpresults;

/* Proposed structure of the database of results for MPTP */

/* Problem info independent of prover runs */

CREATE TABLE probleminfo (

problem VARCHAR(255), /* Index on initial 20 chars */

article VARCHAR(8), /* Article string */

theorem_id SMALLINT UNSIGNED, /* Number in article */

mizar_proof_length INT UNSIGNED,

direct_references_nr INT UNSIGNED, /* Without bg theory */

direct_references BLOB, /* List of their names */

bg_references_nr INT UNSIGNED, /* bg theory */

bg_references BLOB, /* List of their names */

all_references_nr INT UNSIGNED, /* With bg theory */

conjecture_syms_nr INT UNSIGNED,

conjecture_syms BLOB,

direct_refs_syms_nr INT UNSIGNED,

direct_refs_syms BLOB,

problem_syms_nr INT UNSIGNED,

problem_syms BLOB, /* All symbols */

INDEX xproblem (problem(20)),

INDEX xarticle (article),

INDEX xtheorem_id (theorem_id),

INDEX xmizar_proof_length (mizar_proof_length),

INDEX xdirect_references_nr (direct_references_nr),

INDEX xbg_references_nr (bg_references_nr),

INDEX xall_references_nr (all_references_nr),

INDEX xdirect_refs_syms_nr (direct_refs_syms_nr),

INDEX xproblem_syms_nr (problem_syms_nr)
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);

/* Additional problem info for proved tasks */

CREATE TABLE proved (

/* Primary problem identification */

id INT NOT NULL AUTO_INCREMENT,

problem VARCHAR(255), /* Index on initial 20 chars */

article VARCHAR(8), /* Article string */

theorem_id SMALLINT UNSIGNED, /* Number in article */

format ENUM(’DFG’,’TPTP’,

’LOP’,’OTTER’),

prover VARCHAR(255), /* Name and version */

/* Result info */

result ENUM(’PROOF’,’COMPLETION’,

’TIMELIMIT’,’MEMLIMIT’,

’KILLED’,’CRASH’,’UNKNOWN’),

proof_depth INT UNSIGNED,

proof_length INT UNSIGNED,

clauses_derived INT UNSIGNED,

clauses_backtracked INT UNSIGNED,

clauses_kept INT UNSIGNED,

memory_allocated INT UNSIGNED, /* In kb */

time INT UNSIGNED, /* In seconds */

input_time INT UNSIGNED, /* In seconds */

flotter_time INT UNSIGNED, /* In seconds */

inferences_time INT UNSIGNED, /* In seconds */

backtracking_time INT UNSIGNED, /* In seconds */

reduction_time INT UNSIGNED, /* In seconds */

/* Processing info */

time_limit INT UNSIGNED, /* In seconds */

memory_limit INT UNSIGNED, /* In kb */

prover_parameters BLOB,

start_date DATE,
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hostname VARCHAR(255),

machine_cpu VARCHAR(255),

machine_memory INT UNSIGNED, /* In kb */

machine_os VARCHAR(255),

/* Additional result info */

/* used_input_flas_nr = used_dir_refs_nr + used_bg_flas_nr */

used_input_flas_nr INT UNSIGNED,

used_input_flas BLOB, /* List of their names */

used_dir_refs_nr INT UNSIGNED,

used_dir_refs BLOB, /* List of their names */

used_bg_flas_nr INT UNSIGNED,

used_bg_flas BLOB, /* List of their names */

/* not yet */

-- used_syms_nr INT UNSIGNED,

-- used_syms BLOB, /* Only if in the proof */

PRIMARY KEY ( id ),

INDEX xproblem (problem(20)),

INDEX xarticle (article),

INDEX xtheorem_id (theorem_id),

INDEX xprover (prover),

INDEX xproof_length (proof_length),

INDEX xclauses_derived (clauses_derived),

INDEX xtime (time),

INDEX xstart_date (start_date),

INDEX xused_input_flas_nr (used_input_flas_nr),

INDEX xused_dir_refs_nr (used_dir_refs_nr),

INDEX xused_bg_flas_nr (used_bg_flas_nr)

);

/* Proof info is in separate table - it is not supposed to

be accessed too often

*/

CREATE TABLE proof (
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/* id is common with the proved table */

id INT NOT NULL AUTO_INCREMENT,

problem VARCHAR(255), /* Just consistency check */

proof MEDIUMBLOB, /* About 17M should be enough */

PRIMARY KEY ( id )

);

/* Basically as proved, but some result info missing */

CREATE TABLE unproved (

/* Primary problem identification */

id INT NOT NULL AUTO_INCREMENT,

problem VARCHAR(255), /* Index on initial 20 chars */

article VARCHAR(8), /* Article string */

theorem_id SMALLINT UNSIGNED, /* Number in article */

format ENUM(’DFG’,’TPTP’,

’LOP’,’OTTER’),

prover VARCHAR(255), /* Name and version */

/* Result info */

result ENUM(’PROOF’,’COMPLETION’,

’TIMELIMIT’,’MEMLIMIT’,

’KILLED’,’CRASH’, ’UNKNOWN’),

/* proof_depth INT UNSIGNED,

proof_length INT UNSIGNED,

*/

clauses_derived INT UNSIGNED,

clauses_backtracked INT UNSIGNED,

clauses_kept INT UNSIGNED,

memory_allocated INT UNSIGNED, /* In kb */

time INT UNSIGNED, /* In seconds */

input_time INT UNSIGNED, /* In seconds */

flotter_time INT UNSIGNED, /* In seconds */

inferences_time INT UNSIGNED, /* In seconds */

backtracking_time INT UNSIGNED, /* In seconds */

reduction_time INT UNSIGNED, /* In seconds */
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/* Processing info */

time_limit INT UNSIGNED, /* In seconds */

memory_limit INT UNSIGNED, /* In kb */

prover_parameters BLOB,

start_date DATE,

hostname VARCHAR(255),

machine_cpu VARCHAR(255),

machine_memory INT UNSIGNED, /* In kb */

machine_os VARCHAR(255),

/* Additional result info missing in this table */

PRIMARY KEY ( id ),

INDEX xproblem (problem(20)),

INDEX xarticle (article),

INDEX xtheorem_id (theorem_id),

INDEX xprover (prover),

INDEX xclauses_derived (clauses_derived),

INDEX xtime (time),

INDEX xstart_date (start_date)

);

/* Article background info independent of prover runs */

CREATE TABLE article_bg_info (

article VARCHAR(8), /* Article string */

bg_references_nr INT UNSIGNED, /* complete bg theory */

bg_dco_nr INT UNSIGNED, /* constructor types bg */

bg_dco BLOB, /* List of their names */

bg_dem_nr INT UNSIGNED, /* mode existence bg */

bg_dem BLOB, /* List of their names */

bg_pro_nr INT UNSIGNED, /* properties bg */

bg_pro BLOB, /* List of their names */

bg_cle_nr INT UNSIGNED, /* cluster existence bg */

bg_cle BLOB, /* List of their names */

bg_clf_nr INT UNSIGNED, /* functor cluster bg */

17



bg_clf BLOB, /* List of their names */

bg_clc_nr INT UNSIGNED, /* condit. cluster bg */

bg_clc BLOB, /* List of their names */

bg_dre_nr INT UNSIGNED, /* requirements bg */

bg_dre BLOB, /* List of their names */

bg_syms_nr INT UNSIGNED,

bg_syms BLOB, /* All symbols */

PRIMARY KEY ( article ),

INDEX xbg_references_nr (bg_references_nr),

INDEX xbg_dco_nr (bg_dco_nr),

INDEX xbg_dem_nr (bg_dem_nr),

INDEX xbg_pro_nr (bg_pro_nr),

INDEX xbg_cle_nr (bg_cle_nr),

INDEX xbg_clf_nr (bg_clf_nr),

INDEX xbg_clc_nr (bg_clc_nr),

INDEX xbg_dre_nr (bg_dre_nr),

INDEX xbg_syms_nr (bg_syms_nr)

);
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Appendix 3 - Manual page of the top-level

problem generating script

MKPROBLEM(1) User Contributed Perl Documentation MKPROBLEM(1)

NAME

mkproblem.pl ( Problem generating script for MPTP)

SYNOPSIS

mkproblem.pl [options] problemnames

mkproblem.pl -tcard_1 -trolle -ccard_2 t39_absvalue

by_25_16_2_absvalue

Options:

--skipbadrefs[=<arg>], -s[<arg>]

--allownonex[=<arg>], -a[<arg>]

--basedir=<arg>, -b<arg>

--mml_version=<arg>, -T<arg>

--memlimit=<arg>, -M<arg>

--tharticles=<arg>, -t<arg>

--chkarticles=<arg>, -c<arg>

--filter=<arg>, -f<arg>

--definitions=<arg>, -D<arg>

--specfile=<arg>, -F<arg>

--allarticles, -A

--help, -h

--man

OPTIONS

--skipbadrefs[=<arg>], -s[<arg>]

Skip problems with bad references.

--allownonex[=<arg>], -a[<arg>]

Setting to 0 causes error exit on nonexistant

articles.
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--basedir=<arg>, -b<arg>

Sets the MPTPDIR to <arg>.

--mml_version=<arg>, -T<arg>

Force mkproblem to behave as if working with MML

version <arg>. This now influences only how the

non-database type assertions for numerals are cre

ated. Generally, this may influence creation of

any formulas covering various Mizar built-in fea

tures in the future, as they often change across

various MML versions. The <arg> is written in the

form 3_44_763, and for normal usage of the MPTP

distribution, the default is OK. Use this, if you

only want to update the MPTP scripts, without

updating the databases to newer MML version.

--memlimit=<arg>, -M<arg>

Sets memory limit for database caches, not imple

mented yet.

--tharticles=<arg>, -t<arg>

Do all theorem problems from the article <arg>,

this option can be repeated to specify multiple

articles.

--chkarticles=<arg>, -c<arg>

Do all checker problems from the article <arg>,

this option can be repeated to specify multiple

articles.

--filter=<arg>, -f<arg>

Specify the filtering of the background formulas.

Default is now 1 - the checker-based signature

filtering. Setting to 0 does no filtering at all.

--definitions=<arg>, -D<arg>

Specify treatment of definitions. Default is now

0 - the ’definitions’ directive is neglected and

20



definitions must be explicitely specified as ref

erences to be included as axioms for the problems.

1 means that all definitions from the ’defini

tions’ directive are included as direct refer

ences. 2 is like 1, but only definitions from the

current article are used. 3 is as 1, but the def

initions are treated as background formulas

instead, i.e. if filtering is activated, they are

included only if the defined symbols appear during

the fixpoint computation. 4 is like 3, again with

current article definitions only. Options 2 or 4

are useful when we know that the definitions from

other articles have been taken care of explicitly

(e.g. by some previous experience like Mizar Proof

Advisor), but this does not extend to the current

article, which may be new in some sense.

--specfile=<arg>, -F<arg>

Read problem specifications from the file <arg>.

--allarticles, -A

Create theorem problems for all articles that are

present in databases.

--help, -h

Print a brief help message and exit.

--man Print the manual page and exit.

DESCRIPTION

mkproblem.pl gets a list of options and a list of theorem

names or checker problem names (in our format, e.g.

t39_absvalue or by_25_16_2_absvalue), and produces a com

plete dfg file for each of them. This file contains full

informations necessary for reproval, i.e. the references

and all of the background info (constructor types,

requirements, etc.). Problem files are stored under their

articles directories, in the PROBLEMS directory.
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CONTACT

Josef Urban urban@kti.ms.mff.cuni.cz

perl v5.8.0 2003-10-25 MKPROBLEM(1)
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