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Task Outline

Task: Estimate the calibrated epipolar geometry between two selected
views of the scene.
1. Select one pair of images from the set below and download them from here.
2. Download keypoints and tentative correspondences (matches) between the

selected pair of views from here.
3. Use robust estimation (RANSAC/MLESAC) to find the essential matrix

between the images.
4. Show outliers and inliers of the epipolar geometry (as a needle map).
5. Select a reasonable sub-set of inliers (e.g., every n-th) and show

corresponding points and epipolar lines in both images (in the same color).
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http://cmp.felk.cvut.cz/cmp/courses/TDV/data/scene_1/images/
http://cmp.felk.cvut.cz/cmp/courses/TDV/data/scene_1/corresp/


Sparse Correspondences

The sparse correspondences for provided images has been precomputed and
they are available. Note, that the correspondences are tentative, so they may
contain mismatches.
The correspondences are stored in several files:

▶ detected image keypoints (here u_<id>.txt)

▶ 0-based indices of corresponding keypoints (here m_<i1>_<i2>.txt)
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Example: Working with correspondences

Keypoints in Image 1 Keypoints in Image 2 Correspondences
5.3 1613.4 6.3 1749.0 4 7 <---
7.0 364.8 8.4 1753.3 5 18285
9.5 1522.3 8.9 497.9 11 27631
9.9 585.1 10.4 540.9 . . .
10.9 571.7 <--- 11.0 683.2
11.2 578.6 11.0 687.8
11.3 666.1 11.1 589.8

. . . 11.3 583.4 <---
12.1 1212.6
12.2 949.3

. . .



Calibrated Epipolar Geometry

▶ Let us assume that all images were taken by the same perspective camera
with known calibration matrix K. Two specific views of the scene are then
related by a so-called essential matrix E, defined as:

E = [−t]×R,

where R and t are the rotation matrix and the translation vector from the
second view to the first view, respectively.

▶ Given two corresponding homogeneous image coordinates x ∈ I1 and
y ∈ I2, we get their normalized coordinates x′ and y′ as follows:

x′ = K−1x and y′ = K−1y.

Then it must hold that:

y′⊤Ex′ = 0 and x′⊤E⊤ y′ = 0.

▶ As all the acquired correspondences are tentative and can contain outliers
and noise, we will use robust estimation (RANSAC) that we know from
previous assignments. I.e., iteratively repeating hypothesis generation and
consensus verification, to find model with more inliers.
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Hypothesis Generation

▶ All images were taken with the same calibrated camera with the calibration
matrix

K =

2080 0 1421
0 2080 957
0 0 1

 .

=⇒ We first need to transform all keypoints from both images by K−1

to get the normalized coordinates, in order to search for the essential
matrix.

▶ The hypothesis generation then has three steps:

1. Estimating potential essential matrices from five random normalized
correspondences.

2. Decomposing each of the essential matrices into possible rotations and
translations (four combinations).

3. Selecting the pair of rotation R and translation t, so that all five
reconstructed 3D points are in front of both cameras

[
I 0

]
and

[
R t

]
(at most one solution (R, t) for each essential matrix).

=⇒ From one set of five corresponding points, we get multiple
hypothesis (E,R, t), each needs to be verified separately
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Hypothesis Generation – Essential Matrix Estimation

▶ The matrix E (up to scale) has five degrees of freedom and can be
estimated from five normalized correspondences using a so-called 5-point
algorithm. Download and compile our implementation of the algorithm.

▶ Randomly sample five normalized
correspondences x′(i) ∼ y′(i) and
use the 5-point algorithm to esti-
mate the essential matrix.
Multiple solutions may be returned.
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Hint: Compiling the external C++ library p5

▶ Extract the downloaded .zip archive

▶ In the directory p5/src-python execute:
python3 setup.py build

▶ Locate the library file (.so or .dll) in the build directory and copy it into p5/python/p5

▶ Test the functionality by running:
python3 demo_p5.py

in the directory p5/python

▶ To use the function p5.p5gb(...) in your code, copy the directory p5/python/p5 next to the script
and import it as usual

Hint: Python

import p5
...
# Sample five 2D correspondences xs∼ys
Es=p5.p5gb(K_inv @ e2p(xs), K_inv @ e2p(ys))

http://cmp.felk.cvut.cz/cmp/courses/TDV/2010W/code/p5_20201020.zip


Hypothesis Generation – Essential Matrix Decomposition

▶ Each of the returned estential matrices yields one of four possible
combinations of rotation and translation. Here, we will refresh the steps of
the decomposition method from the lecture, please see the slides for more
details.

▶ Given an essential matrix E:

1. Compute SVD of E = UDV⊤ and verify that D = λ

1 0 0
0 1 0
0 0 0

 , λ ̸= 0.

2. Ensure that U and V are rotation matrices, set:

U = det(U) ·U and V = det(V) ·V

3. Compute the possible rotation matrix and translation vector as:

R(α) = U

 0 α 0
−α 0 0
0 0 0

V⊤, t(β) = −βU3,

where |α| = 1, β ̸= 0 and U3 is the third column of U.

▶ This decomposition yields four possible combinations of R and t for
combinations of α = ±1 and β = ±1.
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Hypothesis Generation – Chirality Constraint

▶ Let us assume that the first camera is canonical, i.e., P1 = K
[
I 0

]
, and the

second one is defined as P2 = K
[
R(α) t(β)

]
. Given the (same) five sampled

correspondences x(i) ∼ y(i) (i = 1, ..., 5), we perform triangulation with
numerical conditioning:

1. For the correspondence x(i) ∼ y(i) construct the system of linear equations:

D =


x
(i)
1 (p1

3)
⊤ − (p1

1)
⊤

x
(i)
2 (p1

3)
⊤ − (p1

2)
⊤

y
(i)
1 (p2

3)
⊤ − (p2

1)
⊤

y
(i)
2 (p2

3)
⊤ − (p2

2)
⊤

 , where (pj
i )

⊤ is the i-th row of Pj .

2. Re-scale the problem by a regular diagonal conditioning matrix S ∈ R4×4,
then:

0 = DX = DSS−1X.

3. Solve DSX′ = 0 for X′.
4. Compute the 3D point X = SX′.

(see slides from the lecture for more details)

▶ We then select such a combination of R and t, so that all points are in front of
both cameras. I.e.: (P1X

(i))3 > 0 ∧ (P2X
(i))3 > 0, ∀i = 1, ..., 5.
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Hint: Python

S=np.diag(1/np.max(np.abs(D), axis=0))
u,_,_=np.linalg.svd((D@S).T@(D@S))
X = (S@u[:, -1]) / (S[-1, :]@u[:, -1])



Consensus Verification

▶ Compute the fundamental matrix F from the found essential matrix E (to
estimate errors in pixels):

F = (K⊤)−1 EK−1.

▶ To verify the quality of each hypothesis, we will use the Sampson error. For a 2D
correspondence x ∼ y, its squared Sampson error is defined as:

εF(x,y)
2 =

(y⊤Fx)2

||SFx||2 + ||SF⊤y||2
, where S =

[
1 0 0
0 1 0

]
. (1)

▶ Find an essential matrix E∗ with the best support over all tentative
correspondences using either RANSAC (left) or MLESAC (right).
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si =

{
1 if εF(x

(i), y(i)) ≤ θ
0 otherwise si =

{
1− εF(x(i),y(i))2

θ2
if εF(x

(i), y(i)) ≤ θ

0 otherwise

support =
∑

i si



Expected Results: Inlier Correspondences

Visualize the inliers and outliers (in different colors) of the estimated essential
matrix E∗ as a needle map. Given one selected correspondence x ∼ y, its
needle visualization on the first image can be done as follows:
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plt.scatter(x[0], x[1], 20, 'r')

plt.plot([x[0], x[0]+(y[0]-x[0])], [x[1], x[1]+(y[1]-x[1])], 'r-', linewidth=2)



Expected Results: Epipolar Lines

Visualize a subset of corresponding epipolar lines of the estimated fundamental
matrix F∗ = (K⊤)−1 E∗ K−1 (use the same color for corresponding epipolar
lines). Given one selected inlier 2D correspondence x ∼ y, we get:

e1 = F∗⊤y and e2 = F∗x,

where e1 is the epipolar line in the first image and e2 is the corresponding
epipolar line in the second image.
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Toolbox Functions

▶ For this assignment, you should implement three toolbox functions, which
will be needed throughout the term project:

1. Linear triangulation with numerical conditioning
2. Essential matrix decomposition with chirality constraint
3. Sampson error estimation

▶ You can check your implementations of these toolbox functions through
automatic evaluation in BRUTE. In case of a mistake, you will be
prompted with the anticipated result for a given input.
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Toolbox

err = err_F_sampson(F, u1, u2)
Returns the squared (less computationally intensive) Sampson error for n homogeneous corresponding coordinates u1∼u2.

See (1). Inputs: F ∈ R3×3 ; u1, u2 ∈ R3×n . Output: err ∈ R1×n .

Toolbox

[R, t] = EutoRt(E, u1, u2)
Decomposes the given essential matrix E into rotation R and translation t (see slide 7). It returns the combination, which
fulfills the chirality constraint for n points u1 and u2 (see slide 8). If the chirality fails, it returns R = [].

Inputs: E ∈ R3×3 ; u1, u2 ∈ R3×n . Outputs: R ∈ R3×3 ; t ∈ R3×1 .

Toolbox

X = Pu2X(P1, P2, u1, u2)
Reconstructs n 3D points X from n corresponding 2D points u1 and u2 observed by two cameras P1 and P2, respectively.

See slide 8. Inputs: P1, P2 ∈ R3×4 ; u1, u2 ∈ R3×n . Output: X ∈ R4×n .


